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Abstract— Allowing a human to express topological require-
ments to a robot in language enables untrained users to guide
robot movement without requiring the human to understand
sophisticated robot algorithms. By using a homotopy class or
classes to represent one or more topological requirements, we
build a framework that helps a robot understand a human’s
intent. This paper reviews a homotopic decomposition method
that is used to convert any path into a string, which allows
homotopic path equivalence to be performed by comparing
strings. We then integrate the Homotopic Distributed Corre-
spondence Graph (HoDCG) to infer the homotopic constraint
in the format of strings from a language instruction. Finally, we
use a homotopic path-planning algorithm that finds the optimal
paths for a given objective and homotopic constraint. Experi-
ment results show how a language instruction is converted into
a path driven by an implicit topological requirement.

I. INTRODUCTION

Language-based interactions between a human and a robot
theoretically extend the scope of interaction from only
trained users to anyone who can use language. Language-
based interactions require that a robot can understand what
a human supervisor intends when he or she describes a
task. Since humans are ostensibly good at high-level spatial
reasoning, telling a robot where to move and where to avoid
is a direct and efficient way for a human to express intent in
assigning a task. With proper algorithmic support, humans
need not transform the human-like high-level information
into robot-based quantitative models for robot path-planning.
We address this by allowing a human supervisor to specify
a path topology and describe it to a robot. For example, a
human could say “go to the left of the fountain and on to
the hospital” in order to avoid the ambulance in Figure 1a,
and “go between the hotel and the shop on the way to the
hospital” in order to keep away from the traffic in Figure 1b.

Such constraints can be expressed by, for example, having
a human draw a path on a map, but it is desirable to
explore other ways of expressing constraints. One advantage
of using language to express constraints is that a human
could think and express without converting into a graphical
or robotic perspective. Allowing the human to use language
to express topological constraints requires that a robot is able
to understand an abstract topological description and then
plan a path that honors the desired topology. In this paper, a
topological constraint for robot path-planning is derived from
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(a) Left of the fountain (b) Between shop and hotel

Fig. 1: Topological requirement for navigation

a language instruction. The topological constraint defines a
set of eligible paths that have the required topology shape.
The path-planning problem is finding the optimal path within
this set of paths.

The mathematical notion of a homotopy is widely used
in defining a topology constraint of paths because it defines
the similarity between paths within the same path topology.
When a path can be deformed into another path without
encroaching into any obstacle, the two paths are homo-
topic [1]. In path-planning, when the start position and the
end position are constrained, all the feasible paths can be
classified into homotopy classes [1], each of which includes
all the paths that are homotopic. In this paper, we explore
the spatial relations between paths and objects in a world.
By considering objects as obstacles, we can represent a
topological requirement by a homotopy class or a set of
homotopy classes. We express a topological requirement in
a problem of instructing robotic navigation by

• translating a language instruction into a homotopic
requirement; and

• planning a path subject to the homotopic requirement.

II. RELATED WORK

There are a few approaches to helping a robot understand
the topological information in a language instruction. Un-
derstanding the requirement of an instruction for execution
planning depends on grounding the spatial information ac-
cording to the phrases [2]. An execution plan is inferred
from the grounded information. A semi-structured grammar,
e.g. Tactical Behavior Specification [3], [4], is proposed as
a guide for a human to express commands that a robot
can understand. The grounded spatial constraint from a
command is integrated into path-planning algorithms to get
paths. The language understanding is extended to all types
of natural language. Language examples are used to train
semantic parsers to extract intents [5], [6]. Execution plans
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could be obtained by applying the extracted intents on the
world. For better generalization, graphical models are used to
model the relationships between phrases and groundings [7].
In [8], DCG (Distributed Correspondence Graph) grounds
implicit constraints, which model the correspondences be-
tween phrases and groundings. The correspondences between
phrases and groundings can be factorized by conditional
independence assumption. A path-planning problem can be
created to generate a path that satisfies an inferred constraint.
It has been successfully applied in spatial-constraint infer-
ence from instructions [8].

As we are interested in inferring homotopic constraints,
we need a format of representing a homotopy class for
identification. The homotopy class identification depends on
the recognition of the spatial relation between obstacles
and a path. Homology, a different type of similarity, is
used as an approximation to homotopy. In [1], a map with
obstacles is modeled into a complex plane with undefined
points. Then the homology of paths can be recognized by
comparing the complex integral values based on Cauchy
theorem. Decomposition is the most common approach to
identifying the homotopies of paths. Voronoi diagram, the
classic decomposition method, is introduced to decompose
a map that generates a topology structure of decomposed
disjoint regions. Different walks on this structure derive
reference paths of different homotopy classes [9]. Paths of
diverse homotopy classes can be obtained by deforming the
reference paths. Another way is using a set of line segements
that decompose a map as reference frames [10]. How a path
sequentially crosses the reference frames can be used to
represent its topological shape.

In addition to a homotopic constraint, a human also intends
a specific objective in a language instruction. Most motion-
planning algorithms for homotopic constraints can only find
feasible paths [10], [9] or the shortest paths [11], [12]. We
also include an objective in planning a path, which leads to
an optimal path-planning problem.

In this paper, we propose a framework for language-guided
motion-planning algorithm, which translates a language in-
struction into a path-planning problem and finds the optimal
path accordingly. We describe the framework in Section III,
and provides experiment results in Section IV to support its
performance.

III. A FRAMEWORK OF LANGUAGE-INSTRUCTED
PATH-PLANNER

We propose a language-instructed path-planning system
that can understand the homotopic requirement of a lan-
guage instruction and generate the optimal path subject to
the homotopic requirement. Figure 2 shows the structure
of the system. The Homotopic Distributed Correspondence
Graph (HoDCG), discussed in Section III-A, infers spatial
relations from a language instruction. A map is decomposed
according to the spatial relations in Section III-B, using a
homotopic Deterministic Finite Automata (homotopic DFA)
[13] to convert paths into string representations that honor
topological similarities. The spatial relations are then used to

Language HoDCG Spatial
Relations

Map Decomposition

Homotopic DFA

Map

HARRT*
Topological
Constraint

Optimal
Path

Fig. 2: System Framework

Fig. 3: Factor model

generate rules that define qualified reference frame sequences
in Section III-C; these sequences implicitly define a gram-
mar of eligible strings. The joint set of this eligible string
grammar and the grammar defined by the homotopic DFA
is the inferred homotopic constraint. The Homotopy-Aware
RRT* (HARRT*) [13], a homotopic path-planner, is then
used to find the optimal path in the homotopic constraint in
Section III-D.

A. Inferring Spatial Relations from Language

In this section, we adopt a graphical model that grounds
spatial relations from a language instruction. The spatial
relations are used to derive a homotopic constraint. The
homotopic constraint represents a human supervisor’s re-
quirement of path topology.

Our graphical model is derived from the Distributed
Correspondence Graph (DCG) [8], which is a factor graph
that can efficiently ground language sentences. The graph
consists of a set of factor models. Each factor model defines
a relationship among a correspondence φi, a phrase λi, a
grounding γi, and a set of child elements Γci . A factor model
is visualized in Figure 3.

Essentially, such a factor graph builds a distribution that
represents the correspondences between groundings and a
sentence. This distribution depends on a phrase structure that
is parsed from a sentence by a grammar parser. Figure 4 gives
an example of a parse tree from a sentence “walk by the left
of the table”. The parse tree determines the factor graph.
The factor graph (Figure 5) is created by assembling the
correspondences between groundings and phrases (Figure 3)
according to the parse tree (Figure 4). The inference of the
factor graph returns a set of groundings. The details are stated
in [8].

We propose HoDCG (Homotopic Distributed Correspon-
dence Graph) algorithm that extends DCG for supporting
homotopic requirements. HoDCG includes new types of

1463



VP

VB

walk

PP

IN

by

NP

NP

DT

the

NN

left

PP

IN

of

NP

DT

the

NN

table

Fig. 4: “walk by the left of the table”

Fig. 5: HoDCG structure of “walk by the left of the table”.

groundings to represent homotopies. Inferred groundings are
organized to construct a homotopic constraint by phrase
structure information.

HoDCG includes a graph model that supports spatial
relations as new groundings and a mechanism that derives
homotopic constraints from associated groundings. Figure 5
illustrates a structure of HoDCG, which extends the phrase
structure in Figure 4. Given the phrases as observed nodes,
the inference process is a bottom-up maximum likelihood
search, as formalized in Equation (1).

Φ∗ = arg max
φij∈Φ

∏
p(φij | γij , λi,Γcij ,Υ). (1)

p(φij | γij , λi,Γcij ,Υ) corresponds to a factor model,
as shown in Figure 3, Υ is the world, and the output is a
set correspondence values. As illustrated in Figure 3, when
a correspondence variable is true the grounding associated
with the correspondence variable is said to correspond with
a given phrase.

In implementations, each factor model p(φij |
γij , λi,Γcij ,Υ) is approximated by a log-linear model with
binary features, which is written as in Equation (2). Tuning
the binary feature weight µ changes the approximation of
the probability p. The Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [14] algorithm is used in the
optimization in the training process.

Φ∗ = arg max
φij∈Φ

∏
Ψ(φij , γij , λi,Γcij ,Υ),

Ψ(φij , γij , λi,Γcij ,Υ) =
e
∑

l µlfl(φij ,γij ,λi,Γcij
,Υ)∑

q e
∑

l µlfl(φq,γij ,λi,Γcij
,Υ)

. (2)

HoDCG grounds spatial relations from a language instruc-
tion. We use the spatial relations to obtain a homotopic
constraint.

S1-0

S2-0

S3-0
S4-0

S3-1

(a) Ref. frames

S2-0

S3-1

S3-0

S1-0

S4-0

(b) State trans. (ST)

Fig. 6: Map with obstacles.

B. Encoding Path Homotopy

We firstly need a format that encodes the shape of a
path, which represents a homotopy class. By the definition
of homotopy, we know that paths in the same homotopy
class share the same topology that is defined by spatial
relations with obstacles. This implies a connection between
a homotopy class and a given spatial relation.

We use a decomposition method [13] that divides a map
into subregions, which is derived from the Jenkins method
as in [10]. The decomposition supports the extraction of
topological information, which is obtained by how the path
sequentially visits the subregions. Based on the proposed
decomposition method, a homotopic DFA (Deterministic
Finite Automata) Mh [13] can be constructed that converts
a path σ to a string representation v, which is written as
v = Mh(σ). The string representation is used to identify
the homotopic equivalence, which distinguishes topological
difference of paths.

In this paper, we present a novel decomposition method,
which is modified from the one in [13]. The change we made
is moving the center point c into an obstacle so that more
generated reference frames are associated with the obstacle.
Specifically in our case, the center point locates in one of
the obstacles that is associated with inferred spatial relations.
This makes the decomposition centered at the obstacle.

The map decomposition method starts with a random
sampling process. First, a representative point bk is randomly
sampled from each obstacle Bk. This point may not lie on a
line that connects any other two representative points. A cen-
ter point c is sampled inside one of the obstacles, which must
also not lie on a line that connects any two representative
points. Restricting the center point in an obstacle reduces
ambiguity in homotopy identification. A radial structure is
created from the center point c toward all other representative
points bk. Obstacles in the map cut the radial structure into
line segments. The end of each line segment terminates
within either an obstacle or a map boundary. We use the
line segments to identify the homotopy of paths. The line
segments are defined as reference frames R, which separate
the map into subregions S. Figure 6a gives an example of
the map decomposition.

A sequence of reference frames that a path visits reveals
the topological information. We assign an ID character to
each reference frame. The sequence of reference frames
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can be represented by a string of ID characters. In a path-
planning problem, both a start position and a goal posi-
tion are given, which imply a start subregion and a goal
subregion, respectively. In Figure 6a, the blue point is the
start position and the maroon point is the goal position. Let
each subregion be a state of the DFA, and each reference
be an edge of the DFA. We can have a DFA [13] that
represents how subregions in Figure 6a are connected in
Figure 6b. The DFA in Figure 6b is then modified for
homotopic equivalence, which derives a homotopic DFA [13]
in Figure 6b.

The homotopic DFA abstracts any path into a string
representation. The REPTRIM() algorithm in [13] translates
a string for any path into the smallest possible string for
any path within that homotopy class. Thus, the homotopy of
any two paths can be identified by comparing the strings
generated by the homotopic DFA after processed by the
REPTRIM() algorithm. Notice that we use a map decom-
position method that is slightly different from our prior
work in [13]. Because the center point is moved into an
obstacle, there is no reference frame that is connected to the
center point. It removes the ambiguity brought by reference
frames that are connected to the center point, but preserves
the validity of other properties. We restate the key property
from [13] because it will be important to the results of this
paper:

Theorem 1: REPTrim(Mh(σi)) = REPTrim(Mh(σj))
This theorem means that REPTrim(Mh()) encodes a path
into a string, and we can use the strings of paths to identify
homotopies.

C. Rules from Spatial Relation Functions

As discussed above, we suppose that humans can reason
and express intent using spatial language. Thus, natural
language does not necessarily describe a path topology.
Rather, a human’s instruction implies a spatial relation that
constrains the allowed path topologies. In Section III-B, a
homotopic DFA is used to represent abstract topologies in a
string format when a map, a start position and a goal position
are known. In this section, we describe how to determine
which of the strings generated by a homotopic DFA satisfy
a spatial relation constraint specified by a human.

Suppose that a spatial relation constraint is always asso-
ciated with objects in a map. We define a spatial relation
function over objects O and returns a corresponding rule `.

A path will never cross multiple reference frames at
the same time. Given this condition, we propose a set of
operators that assemble ID characters of reference frames
into strings, and describe how these character operators
correspond to rules on spatial relations.

• CONCATENATION ∩ is used to concatenate two
ID characters. It corresponds to a sequential order of
visiting corresponding reference frames.

• UNION ∪ is used to union two ID characters. It
indicates that a path may visiting either of the regions
that correspond to the two ID characters of the reference
frames.

A

B

C

(a)
INBETWEEN(B,C)

A

B

C

(b) LEFTOF(B)

A

B

C

(c) AVOID(B)

Fig. 7: Spatial Relation Functions.

• NEGATE ¬ is used to negate one ID character. It
indicates that the region associated with an ID character
should be avoided.

The following examples of spatial relation functions illus-
trate how these functions are translated into operators on the
IDs:

• (r1 ∪ · · · ∪ rn) = INBETWEEN(o1, o2),
• (r1 ∪ · · · ∪ rn) = LEFTOF(o) | RIGHTOF(o) |

TOPOF(o) | BOTTOMOF(o),
• ¬(r1 ∪ · · · ∪ rn) = AVOID(INBETWEEN(o1, o2)),
• ¬(r1 ∪ · · · ∪ rn) = AVOID(LEFTOF(o)),
• ¬(r1 ∪ · · · ∪ rn) = AVOID(o) = AVOID(LEFTOF(o) ∪

RIGHTOF(o) ∪ TOPOF(o) ∪ BOTTOMOF(o)).
A rule ` describes a logical proposition of reference frames

in the disjunctive normal form. For example, a sentence ”go
between B and C ” for the world in Figure 7a is translated
to the rule INBETWEEN(B,C), which in turn returns the
ID character from visiting the reference frame that connects
object B to object C. A sentence “go by the left of B” is
associated with LEFTOF(B) returns ID characters that locate
at the left of object B, which is shown in Figure 7b. Also,
a sentence “avoid B” is associated with AVOID(B), which
equals to avoiding four direction near object B. Also by the
logic, we can have ¬(r1 ∪ · · · ∪ rn) = ¬r1 ∩ · · · ¬ ∩ rn. It
indicates that all the reference frames associated with object
C should be avoided.

We can see that a spatial relation function can return
multiple associated reference frames. Assembling rules by
operators into a new rule supports complicated semantic in
a language expression.

• Sequence There are often many orders implied in
forcing a sequence of ID characters of reference frames.
For example, “go to left of A before going to bottom
of B”. Let `A be a rule for spatial relation with object
A and `B be a rule for spatial relation with object B.
We can have the rule for the command as `A ∩ ∗ ∩ `B .

• Reverse It is used to negate a given rule. For example,
“never go to left of A”. It means all the reference frames
that are on the left of object “A” should be avoided,
which is written as ¬`A.

If we do an exhaustive search on the topology of ho-
motopic DFA, we can have all the possible strings from a
start state to a goal state. Each string represents a sequence
of reference frames. Rules derived from a spatial relation
function can be used to filter out ineligible strings. The set
of eligible strings defines a homotopic constraint. Only paths
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start

goal

Fig. 8: HARRT*

that the homotopic DFA generates strings belonging to the
set are considered in planning.

D. Homotopic Path-Planning

We use a homotopic path-planner to find a path by a
homotopic constraint. Because of the lack of precision in an
instruction, one or more homotopy classes may be included
in defining a homotopic constraint. In above sections, we can
derive a homotopic constraint from a language expression.

We also want to support adverb in a language instruc-
tion [15]. For example, “carefully” and “quickly” indicate
different criteria in measuring the performance. This implies
a specific objective to consider in planning a path. The ob-
jective differs with different verbs and adverbs in language.
Thus, we define our problem as a homotopy-based optimal
path-planning problem [13]. The objective and homotopic
constraint are both inferred from a language expression.

We need an algorithm that could explore several ho-
motopy classes in parallel and return the optimal path of
each class, because a homotopic constraint could consist
of several homotopy classes. HARRT* (Homotopy-Aware
RRT*) proposed in [13] is a homotopy-based optimal path-
planner, which utilizes the RRT* structure to explore a map
according to homotopic information. A homotopic DFA is
used to identify the homotopic information of each branch
of an RRT* structure. The homotopic information is used
to constrain the exploration only in necessary regions. There
are two tree that are extended from the start position and the
goal position bidirectionally. By the asymptotic optimality
of RRT*, both trees converge to optimal structures. To any
position, one provides an optimal-to-come subpath, while the
other provides an optimal-to-go subpath. Concatenating two
subpaths gets a path that is optimal from the start to the goal
subject to a constraint of visiting the concatenating position.
An example is shown in Figure 8. A node highlighted in
orange color in the goal tree. A red dash-line circle indicates
the neighboring nodes for adding and rewire process in tree
extension. A path in orange color is obtained from this node.
At each iteration, one path is found in the start tree, and one
path is found in the goal tree. If any new path is better than
the current best found path in the hotomopy class it belongs
to, the optimal found path will be updated. The optimal paths
of multiple homotopy classes can be obtained, because of the
variation in selecting concatenating positions. We can thus
have the optimal paths of homotopy classes after iterations.

(a) Turtlebot (b) Gazebo

Fig. 9: Simulation environment.

(a) Map with three boxes (b) Collision avoidance

Fig. 10: Map and costmap of an environment with three
boxes

IV. EXPERIMENT

In this section, we use simulations to validate the
language-instructed path-planner. In [8], how the goal is
inferred from a language instruction is demonstrated. In this
paper, we focus on only how a homotopic constraint can be
inferred and how it is used for instructing the navigation of a
robot. The experiments were running in Gazebo simulator, in
which we instructed a Turtlebot moving in among numbered
boxes.

Currently the training of HoDCG has not been applied
to a big dataset. But it has only been verified with a small
dataset with five examples that enumerates all the possible
spatial relation functions. The inferred result is consistent
with the training dataset. Some examples are shown in Ta-
ble I. Because HoDCG uses the same training and inference
algorithm with DCG and only extends the search space with
new types of grounding, we observe that HoDCG has a
consistent performance with DCG [8], [16].

TABLE I: Examples for training

LEFTOF(o) “Swing by the left of ...”
INBETWEEN(o1, o2) “Go between ... and ...”
AVOID(INBETWEEN(o1, o2)) “Avoid going between ... and ...”
AVOID(LEFTOF(o)) “Stay away from the left of ...”

We obtained a map of the environment with three boxes
from the Gazebo, which is shown in Figure 10a. Each box
is labeled for reference. We choose maximizing the distance
to any obstacle or environment boundary as the objective for
planning, and have the costmap of the environment shown
in Figure 10b. The darker a position is, the lower cost there
is.
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(a) HoDCG (b) HARRT* and path

Fig. 11: “Walk by the left of box 3”.

(a) HoDCG (b) HARRT* and path

Fig. 12: “Go between box 3 and box 1”.

Figure 11 gives an example of an instruction “walk by the
left of box 3”. Figure 11a illustrates a HoDCG that is created
from the instruction. From the inferred spatial relation, the
path is required to two eligible reference frames, which are
green bold lines in Figure 11b. The red point is the start
position, and the blue point is the goal position. From the
costmap in Figure 10b, the optimal path is obtained and is
shown in orange color.

Similarly, we can have a HoDCG structure generated for
“go between box 3 and box 1”, which is shown in Figure
12a. As a result, a reference frame that connects box 3 and
box 1 is inferred to be required to visit, which leads to a
planned path accordingly in Figure 12b.

We also tested the negation of a spatial relation. Figure 13
shows an example for “Avoid going in between box 3 and
box 2”. A negation of in-between spatial relation is inferred
from a corresponding HoDCG. A bold red line is shown
in each subfigure of Figure 13, which indicates a reference
frame that is not allowed to cross. Subfigures show three
different solutions in different homotopy classes all satisfy
this homotopic constraint. It reveals that there is lack of
precision in the instruction. We can either take the optimal
of the three as the solution for robot navigation or introduce
an interactive process for human to select.

We also tested in a more complicated environment, which
is shown in Figure 14a. There are nice boxes in the environ-
ment, which means a higher variety in spatial relations and
a bigger number of homotopy classes. The corresponding
costmap for collision avoidance is given in Figure 14b.

With more possible spatial relations and homotopy classes,
the potential imprecision of a language instruction is in-

Fig. 13: “Avoid going in between box 3 and box 2”.

(a) Map with nine boxes (b) Collision avoidance

Fig. 14: Map and costmap of an environment with nine boxes

Fig. 15: “Go between box 5 and box 8”.

creased. Figure 15 shows four paths of different homotopy
classes all satisfy the inferred in-between spatial relation,
which is inferred from an instruction “go between box 5 and
box 8”.
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Fig. 16: “Go between box 8 and box 6 and avoid the left of
box 1”.

If fewer number of homotopy classes are to be considered,
more constraints should be stated in an instruction to reduce
ambiguity. Figure 16 shows an example of an instruction
“Go between box 8 and box 6 and avoid the left of box 1”.
Less paths are obtained because less homotopy classes are
eligible for the inferred homotopic constraint.

V. FUTURE WORK AND CONCLUSION

The sequence of spatial relations, which supports a sen-
tence like “go ..., then ...” , is not included in the experiment
yet. It depends on that the inference of HoDCG could
provide sequential information of a set of groundings, which
will be added in future work. Enabling the sequence of
spatial relation would be another efficient way of reducing
ambiguity in a language instruction, which constrains a
problem to less number of eligible homotopy classes in a
complex environment. We are also going to integrate the
framework with other planning information for expanding
the features of language instructions, which will be a hi-
erarchical structure [16] that include goal constraints and
different objectives. Soft constraints will then be introduced
to better support human requirements. For example, in many
scenarios, “avoid” only indicates a soft constraint instead of
a hard one.

We propose a framework of language-instructed path-
planning that integrates a language inference model
(HoDCG) and a homotopic path-planning algorithm
(HARRT*) so that a robot could read a homotopic require-
ment in a human’s instruction and planning a required path.
The translation from an instruction to a path consists of a
mapping from paths to strings, a graph model that interpret
an instruction into homotopy classes and a path-planning
algorithm that finds optimal paths of the homotopy classes.
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