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Abstract—Particle Swarm Optimization is an effective algo-
rithm because of the combination of the stochastic behavior of
particles and the swarm structure. Unfortunately these features
also make it difficult to understand the dynamics of PSO.
Common methods of analyzing PSO rely on simplifying the
algorithm, e.g., assuming stagnation (a state where the swarm
ceases finding better solutions) or treating the stochastic factors as
constants. In this paper, we expand on earlier work to understand
the dynamics of PSO which used input-to-state stability analysis.
In particular, we decompose PSO more completely and use the
properties of combinations of input-to-state stable components
to model convergence at all levels up to and including the entire
swarm. This approach allows us to conceptualize the swam as a
leader-follower structure and analyze the swarm under a variety
of conditions including various fitness functions.

I. INTRODUCTION

Particle swarm optimization (PSO) is a popular and efficient
optimization algorithm. It is inspired by the social behavior
in flocks of birds and schools of fish. In PSO a particle is
driven by a personal best and a global best. The personal
best (xP ) is the location of the best solution the particle has
found, while the global best (xG) is the best solution that
any of the particles in a swarm have found. The movement
of each particle is the stochastic attractions toward these
“best” locations. Mathematical models of the algorithm have
been used to evaluate and understand the behavior of the
algorithm but better models of the algorithm can enable better
understanding. This understanding includes issues such as:
why PSO can effectively converge to an optimal solution in
some cases, and fail to find an optimal solution in other case?

Stagnation is an important phenomenon frequently used to
understand the search process of evolutionary optimization
algorithms. It is commonly defined as a condition in which an
algorithm stops finding better solutions. In the PSO, this means
that none of the particles in the swarm can find a better solution
than the current global best. In this state, the global best, xG,
and the personal best, xP , are constant for all particles [1], [2].
Understanding the dynamics of the particles in stagnation is
helpful in analyzing the behavior and the optimization (search)
capability of the particle swarm optimization. Plenty of work
has focused on the behavior of PSO when this happens,
including the investigation of the convergence of particles in
the swarm [3], [4].

In this work we consider both the behavior at stagnation and
the behavior during the time that the global best is unchanged,
but in which the personal best of each particle is still changing.

We refer to this state as global-best stagnation. If we partition
the search process of PSO based on the times when the
global-best is updated, we can model the execution of PSO
as a sequence of global-best stagnations. A global-best update
triggers a transition to a new global-best stagnation. Similarly,
a global-best stagnation can be decomposed into a sequence
of stagnation. A personal-best update triggers a transition to
a new stagnation. This way of decomposition will help us
analyzing the process.

Since particles only share information through updates to
the global best, during global-best stagnation, particles have
no interaction and they act only as a set of independent agents.
Furthermore, the particles are in a competitive relationship, a
particle that finds a better solution than the current global best
updates the global best and leads the swarm out of the previous
global-best stagnation.

The movement of a particle can be seen as being driven by
a force toward the personal best and a force toward the global
best. Thus when the global best and the personal best are not
the same, the two forces will never exactly balance and the
particle will continue to move. Because of the stochastic terms
in the PSO update formula a particle will continue to move
toward some random position influenced by the global best and
the personal best unless the global and personal best positions
are equal. In this paper, the precision cut-off in implementation
is ignored. We have Property 1.

Property 1. A particle will not stop moving unless its personal
best and global best are equal, that is: limk→∞ v(k) 6= 0, if
xP 6= xG.

Proof. Assume that when xP 6= xG, limk→∞ v(k) = 0. It
means that φPuPij(k)(xPij(k) − xij(k)) + φGuGij(k)(xGij(k) −
xij(k)) = 0 for any uPij(k), uGij(k) ∈ (0, 1), which cannot be
true.

This indicates that the stochastic factors prevent the exis-
tence of an equilibrium position for a particle before the global
best and the personal best reach a consensus. Furthermore,
this implies that a conventional analyses of convergence that
ignore the stochastic factors is not enough to understand the
dynamics of the optimization process in PSO.

In Section III, we decompose the particle into two com-
ponents, which form a feedback cascaded structure for the
dynamics. We introduce the system decomposition of a particle
and a swarm and review input-to-state stability analysis [5] in



Section III-B. This enables the new investigation of particle
movement found in Section IV. Then we extend the scope
of our investigation from the level of a single particle to the
level of the whole swarm, and show how input-to-state analysis
explains the search capabilities of PSO in Section V.

II. RELATED WORK

The dynamics of PSO is hard to evaluate in general, due
to the combination of the stochastic nature of the particle’s
path and the social interaction represented by the swarm
topology. Early analysis began by replacing stochastic terms
with constant terms in order to predict the convergence of
a particle at stagnation [6] [7]. Based on such convergence
analyses, parameters can be set for the best effect [8]. Another
approach for handling the stochastic factors is based on the
stochastic analysis. By taking the mean of the stochastic
variables, the stochastic terms are naturally converted into
constant terms. A convergence analysis of the mean and
variance of a particle at stagnation can also be obtained using
the characteristic equation in a discrete-time model [9]. In
a similar way, other moments can be computed [10], [11],
[4]. Furthermore, equilibria can be found using a discrete-time
system model of different moments. The stability requirements
can be obtained from the norm by setting the root values of
the characteristic equation to all be less than 1 [10], [11], [4].

There are also several approaches involving the analysis of
the stochastic behavior of particle swarm optimization. All
of the stochastic terms can be modeled as bounded nonlinear
feedback[12]. The global best and the personal best can be
integrated into the nonlinear feedback. This depends on the
assumption that the personal best and global best are both
constant. The analysis tool of l − 2 stability has also been
applied and used to understand the impact of the stochastic
terms on the convergence [13]. Since the global best and
personal best are plugged into the feedback term, it becomes
hard to evaluate the impact of the updates of the global best
and personal best.

There is also some work that addresses the dynamics of a
particle when it is not in stagnation. In one such approach
the discrete-time dynamics of PSO, that is, the dynamics of
particle trajectory, can be approximated using a continuous-
time model [14]. In this way the global best and the personal
best can be modeled as time-variant variables. Furthermore,
the probability of convergence in time can be analyzed by
viewing the update process as a random search process [15].
In addition to this approach to model the behavior of a particle
in a swarm, the process of particles reaching a local optimum
has also been analyzed [3].

Most of these prior efforts still seek to analyze the algorithm
at the particle level. The influence from a swarm on the
behavior of a particle has not been considered enough. The
analysis of the particles impact each other in a swarm and
in a fitness space seems critical to understanding the swarm
behaviour during optimization.

III. SYSTEM

In this paper we use the formulas from Kennedy’s most
recent definition of PSO [16], which can often be extended
to many versions of PSO. This version of PSO includes a
constricted position update rule, a personal best update and a
star topology formed by a global best update. The constricted
position update rule is

vij(k + 1) =χ[vij(k) + φPuPij(k)(xPij(k)− xij(k))

+ φGuGij(k)(xGij(k)− xij(k))],
(1a)

xij(k + 1) = xij(k) + vij(k + 1). (1b)

xij(k) represents the position of particle i in dimension j at
time k. vij(k) similarly represents the velocity of particle i
in dimension j also at time k. xGij(k) and xPij(k) are global
(actually topology) and personal best positions observed by
the swarm and the particle respectively. uGij(k) and uPij(k) are
independent random values drawn from [0, 1]. χ ∈ (0, 1), φP

and φG are algorithm parameters. The personal best update
and the global best update are

xPi (k) = arg maxx∈{xi(k),xP
i (k−1)}f(x). (2a)

xGi (k) = arg maxx∈{xi(k),xG
i (k−1)}f(x). (2b)

A star topology is modeled by simply sharing the global best.
When particle i finds a position that is better than the current
global best, it updates its global best and its personal best. The
swarm moves to a new global-best stagnation, which means
that xi(k) = xPi (k) = xGi (k). Equation (1a) becomes

vij(k+1) = χ[vij(k)+(φPuPij(k)+φGuGij(k))(xGij(k)−xij(k))].
(3)

As the inertia of the previous velocity vij(k) will decay
to zero, the particle is attracted to xGij(k) as φPuPij(k) +
φGuGij(k) ≥ 0. This particle can be viewed as a leader of
the swarm, which forms the star topology in Figure 1.

Follower

Leader

Fig. 1: A leader-follower relationship.

The star topology implies a leader competition in a swarm.
A particle that finds a new global best becomes the leader of
the swarm. A leader particle holds the same global best and
personal best xG(k) = xP (k), The other particles are follower
particles, which follow the leader by virtue of the attraction
to the global best. By Property 1, we know that a follower
particle will never stop moving if the personal best and the
global best are different. Thus, a follower particle wanders
randomly in the search space till it reaches a position that is
the same with the global best, which is the only input from
the rest of the swarm.



A. A Feedback Cascade Model in a Particle

With the global best as the input, we model the behavior of
a particle as a feedback cascade system in the fashion used by
Yi et. al.[5]. As shown in Figure 2a, this system is comprised
of two components that form a feedback system structure.
These two components are the input-update component for the
personal best (xPi (k)) and the global best (xGi (k)), and the
position-update component for particle position (xi(k + 1)),
which depends on the inputs xGi (k) and xPi (k) as well as the
last position xi(k).

Position Updatefrom
swarm 

Particle

Personal-best
 Update

(a) System structure of Particle.

Particle 1

Particle 2

Particle N

Global-best
Update

(b) System structure of Swarm.

Fig. 2: System structure of PSO.

In the position-update component, the position at each
dimension is updated by using xGi (k) and the xPi (k) in the
corresponding dimension. By Equation (1), we can decompose
the position-update component into subcomponent in each
dimension. As shown in Figure 2a, the subcomponents in
the position-update component form a parallel connection.
From (1), we can write a linear form of the position update
component in one dimension.

X(k + 1) = A(k)X(k) +B(k)U(k) (4)

with A(k) =

[
χ −χφGuG(k)− χφPuP (k)
χ 1− χφGuG(k)− χφPuP (k)

]
and B(k) =

[
χφGuG(k) χφPuP (k)
χφGuG(k) χφPuP (k)

]
. The system state is

X(k) = [v(k), x(k)− xR]T , and the system input is U(k) =
[xG(k)−xR, xP (k)−xR]T . 1 With a new x(k+1), the personal
best update component will update the personal best xP (k+1)
that are fed into the position update component.

The input-update component consists of a global-best input
and a personal-best update. The personal best and global best

1xR means a reference point to the system. When applying to the PSO, it
can be a local optimum, a global optimum, or an estimated optimum. We use
it as a reference point to check the bounds.

are the input of the position-update component. As in Figure
2a, the global-best input only receives the input from the
swarm. Thus the state to the reference point xR is xG(k)−xR.
The personal-best update compares the current x(k) with the
xP (k−1). If xi(k) is better, the personal best is updated with
it. We can write the personal-best update as

U = gPU (V ) (5)

with U = xP (k)− xR and V = x(k)− xR from (2a).
In Figure 2a, the position of a particle is modeled into a

system with the input xG(k) and the output x(k). By using
this model, we can have the system structure of a swarm in
Figure 2b. There is a global update that reads the states of all
the particles and determines whether the global best should be
updated. The global best is fed back to all the particles for the
next optimization iteration.

B. Input-to-State Stability

It can be shown that PSO satisfies this definition when
the parameters of PSO are set in the requisite range[5]. The
bounds implied by the ISS property can also be derived, which
can be applied to find bounds on particle motion.

Input-to-state stability analysis has been a useful tool in
understanding the convergence dynamics of a system with
interconnected components. As the decompositions of a swarm
and a particle in Figures 2a and 2b, input-to-state stability to
the components can be used to evaluate particle movement,
e.g. how the bounds on xGi (k) and xPi (k) determine the
position of particle xi(k) [17].

The definition of input-to-state stability depends on several
types of functions [17].
• K-function K : a function α() : [0, a) → [0,∞) is

continuous, strictly increasing and α(0) = 0; it is a K∞-
function, if α(s)→∞ as s→∞;

• KL-function KL : a function β() : [0, a)× [0,∞)→ [0,∞)
satisfies:

1) ∀t ≥ 0, β(·, t) is a K-function;
2) ∀s ≥ 0, β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.

Definition 1 (Input-to-state stable [17]). For x, a discrete-time
system defined as follows:

x(k + 1) = f(x(k), u(k)), (6)

with f(0, 0) = 0 2, the system is (globally) input-to-state stable
if there exist a KL-function β and a K-function γ such that,
for each input u ∈ lm∞ and each ξ ∈ Rn, it holds that ∀k ∈ Z+,

|x(k, ξ, u)| ≤ β(|ξ|, k) + γ(‖u‖). (7)

The β() term in equation (7) defines an initial bound with
a decaying property. The γ() term in equation (7) defines a
bound determined by the input. This means that the influence
of the β() term gradually decreases to zero and the position is
bounded by a range determined by the bound on the input [5].

2This means that x = 0 is an equilibrium of the 0-input system.



In the case of PSO and as shown in Figure 2a, if each
component (representing a single dimension) is input-to-state
stable, the position-update component which combines all the
dimensions is also input-to-state stable. Thus we have property
2.

Property 2. The position-update component is input-to-state
stable if the update in each dimension is input-to-state stable.

This simplifies the analysis of the system since it allows us
to consider each dimension separately. In our analysis of the
PSO algorithm, we seek to understand how the particles con-
verge to some position xR, which is intended (not guaranteed)
by the algorithm to be the optimal position. For this analysis
we use a one-dimension particle and extract the linear form
of the position-update component. As noted above, the one
dimensional case can be extended to many dimensions.

The conditions of ISS [5] helps explain what happens to a
particle given different conditions on personal best and global
best. When the position update component is input-to-state
stable, the input-to-state stability of the particle is determined
by the input-to-state stability of the personal best update
component. However, the input-to-state stability of the input
update component can not be guaranteed because it depends
on the fitness distribution. In section IV, we will analyze the
behavior of a particle when the position update component
is input-to-state stable. We will later extend the analysis to a
swarm in section V.

IV. PARTICLE ANALYSIS

In a global-best stagnation, the global best is constant. For
convenience, we denote the global best as a constant xG in a
global-best stagnation. A particle is isolated from the impact
of other particles in a global-best stagnation. A leader particle
will gradually converge to xG(k) by Equation (3). Follower
particles are hard to evaluate, because the dynamics are driven
by both the personal best and the global best. In global-best
stagnation, we are interested with
• whether a particle converges to the global best;
• and the probability that a particle finds a new global best.

In order to measure how the particle converges to the global
best, we let xG be the reference position xR and get Equa-
tion (8).[

v(k + 1)
x(k + 1)− xG

]
= A(k)

[
v(k)

x(k)− xG
]

+B(k)

[
0

xP (k)− xG
]

(8)
It is obvious that if the movement bounded region of a

particle does not cover the optimal, the particle will not
converge to the optimal solution. We have property 3.

Property 3. Whether a particle can reach the optimal is
impacted by the boundary of its movement.

By Corollary 1 in [5], we know that the boundary range
is determined by both |xP − xG| and the swarm parameters.
Figure 3 gives an example on the boundary impacting the mov-
ing toward the optimal. As illustrated in Figure 3, parameter 1
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Fig. 3: The convergence to the optimal of particles with differ-
ent parameters. Parameter 1 is χ = 0.3, φP = 0.2, φG = 0.2
and parameter 2 is χ = 0.72984, φP = 2.05, φG = 2.05.

leads a smaller movement boundary, in which case the particle
never has a chance of reaching the optimal.

A. Stagnation

We denote the personal best and the global best as constant
xP and xG in stagnation, because they are not updated. By
Corollary 1 in [5], we know that ‖x(k) − xG‖ indicates the
distance between position x(k) and the global best xG, which
is determined by ‖xP − xG‖. Thus we have Theorem 1.

Theorem 1. If a particle is input-to-state stable, there exists
a boundary function γ() that

|x(k)− xG| ≤ γ(|xP (k)− xG|), (9)

Particularly, when xP is constant, |x(k)−xG| ≤ γ(|xP−xG|).

Theorem 1 indicates how the movement of a particle is
bounded by the distance between global best and personal best.
We look at two categories of fitness distributions, unimodal
and multi-modal respectively in following two subsections.

B. Unimodal Fitness Distribution

Unimodal functions are a common type of fitness distri-
bution and which provides a partial monotonic shape. Let’s
define a unimodal function as a function f(x) that
• there exists only single optimum; and
• the function is convex.

Any shape of fitness distribution can be approximated by a
combination of unimodalities. In most cases, particles gradu-
ally converge towards one unimodal region of a fitness distri-
bution. In a unimodal fitness distribution, we can categorize
the behavior of the swarm into two sub-cases, xG = x∗ and
xG 6= x∗.

1) xG = x∗: xG = x∗ indicates that a swarm has already
found the optimal solution. No particle will find a better
solution. By Theorem 3, we know that all particles in the
swarm should gradually converge to the global best if the
position-update component is input-to-state stable. The input-
to-state stability of the personal-best update component is
determined by the fitness distribution. We have the condition of
the fitness distribution that guarantees the personal best update
component input-to-state stable. It is given in Lemma 1.



Lemma 1. If there exist α1() and α2() are K∞-function
, f(x∗)− α2(|x|) < f(x) < f(x∗)− α1(|x|), when xG = x∗,
the personal-best update component is input-to-state stable.

Proof. Let V (xP (k)) = f(xG) − f(xP (k)). Because we
have α1(|xP (k)|) ≤ V (xP (k)) ≤ α2(|xP (k)|). We have
V (xP (k)) satisfying condition 1 of the ISS-Lyapunov function
definition [17].

We also have

V (xP (k + 1))− V (xP (k))

=f(xP (k))− f(xP (k + 1))

=f(xP (k))− f(arg max
{xP (k),x(k+1)}

f(x))

=

{
0 if f(x(k + 1)) ≤ f(xP (k))

f(xP (k))− f(x(k + 1)) if f(x(k + 1)) > f(xP (k))

≤
{
f(xP (k))− f(x(k + 1)) if f(x(k + 1)) ≤ f(xP (k))
f(xP (k))− f(x(k + 1)) if f(x(k + 1)) > f(xP (k))

≤f(xP (k))− f(x(k + 1))

≤− V (xP (k)) + V (x(k + 1))

≤− α1(|xP (k)|) + α2(|x(k + 1)|).
(10)

We have that α1() is K∞-function and α2() is K-function.
Thus the condition 2 of the ISS-Lyapunov function definition
is also satisfied. V (x) is an ISS-Lyapunov function. By
Lemma 3.5 in [17], in this case, the personal best update
component is input-to-state stable.

When both the personal-best update component and the
position-update component of a particle are input-to-state
stable, we have the condition that the particle is input-to-state
stable in Lemma 2.

Lemma 2. When the position update com-
ponent is input-to-state stable, |x(k)| ≤
max{β1(|x(0)|, k), γP1 (|xP (k)|), γG1 (|xG|)}, and the
personal best update component is input-to-state
stable, |xP (k)| ≤ max{β2(|xP (0)|, k), γ2(|xP (k)|), if
γP1 ◦ γ2(s) < s, the feedback model of a particle is
input-to-state stable.

Proof. In Figure 2a, consider the global best as a constant,
the personal best update component and the position update
component forms a feedback structure, which enables us to
apply Theorem 2 in [17] to provide input-to-state stability
analysis.

We have the condition that a particle converges to the
optimal x∗ in Theorem 2. When the fitness distribution is
unimodal, f(x∗) − α2(|x|) ≤ f(x) ≤ f(x∗) − α1(|x|) is
satisfied. We have Theorem 2.

Theorem 2. When xG = x∗, if f(x∗) − α2(|x|) ≤ f(x) ≤
f(x∗)−α1(|x|) and γ1◦γ2(s) < s, a particle will converge to
x∗ if the position-update component of the particle is input-to-
state stable. γ1() is the gain of the position update component
and γ2() is the gain of the input update component.

Proof. By Lemma 2, we have the feedback model of a particle
is input-to-state stable. Because xG = x∗, the input to the
cascade model of the particle is zero, |xG − x∗| = 0. By
the property of the input-to-state stability, |x(k) − x∗| will
converge to zero, which means that the particle will converge
to x∗.

Theorem 2 shows the condition that convergence could be
guaranteed. Because φPuP (k) and φGuG(k) are randomly
sampled at each iteration, γ1 ◦ γ2(s) < s is not easy to
guarantee; however, the stochastic terms contribute to almost
surely convergence. Thus, we can have Theorem 3.
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Fig. 4: How sets A and B are defined.

Theorem 3. In a unimodal case, when xG = x∗, a parti-
cle will almost surely converge to x∗ if the position-update
component of the particle is input-to-state stable.

Proof. The convergence of a particle depends on the the
personal best. In this case, given the personal best xP , the
solution space Ω = A ∪ B ∧ A ∩ B = φ, in which
A = {x|f(x) > f(xP )} and B = {x|f(x) ≤ f(xP )}. As
long as the particle gets into the set A, the volume of the
set A decreases. When A = φ, xP = xG = x∗. By the
nature of the update of personal best, xP will only move into
set A or be unchanged. Assume that it is possible that when
xP 6= xG = x∗, xP will be unchanged. It only happens that
when the particle never moves into set A. However, because
XG is in set A, by the property of input-to-state stability, we
know that there exists a set near around xG that the particle
will move into and is a subset of set A, which contradict with
the assumption. Thus the probability that the particle moves
into set A is also larger than zero. Once the particle moves
into set A, the personal best shall be updated, and the volume
of A will decrease. Thus, the volume of A will almost surely
converge to zero. It means that the personal best will almost
surely converge to the global best, which leads to that the
particle almost surely converges to xG = x∗.

2) xG 6= x∗ : When a swarm has not yet found the optimal
solution, the convergence of a particle is harder to evaluate. If
we have f(x∗)− α2(|x|) < f(x) < f(x∗)− α1(|x|), we can
estimate the dynamics by Theorem 3. Otherwise, if a particle
accidentally reaches into a region where the fitness is better



than the current global best, the global best will be updated
and a new global-best stagnation is triggered. If the particle
at least finds a solution that is better than the current personal
best but worse than the current global best, the personal best
will be updated. Another possibility is that the particle wanders
stochastically in a region where the fitness is worse than both
the personal best and the global best.

In order to analyze what happens when xG 6= x∗, we re-
emphasize that a particle should never stop at the current
global best xG, which is stated in Lemma 3.

Lemma 3. In a unimodal case, if xG 6= x∗, a particle will
never stop at xG.

Proof. Assume that a particle will stop at xG. Consider two
possible cases:
• f(x∗) < f(xG) < f(xP ) : By Property 1, we know that

the particle will never stop.
• f(x∗) < f(xG) = f(xP ) and xG¬xP : Because xP will

not be changed, by Property 1, we know that the particle
will never stop.

• f(x∗) < f(xG) = f(xP ) and xG = xP : There exists
a set A that includes all the states that f(x) < f(xG).
And there exist a set ¬A that includes all the states that
f(x) ≤ f(xG) Assume that for any current state xk,
a particle will stop at xG. By the nature of global-best
update and personal-best update, it means that it will
never moves into set A. When a particle is input-to-state
stable, there exists a bound near xG. The convexity of
a unimodal function guarantees that the intersection with
set A is always greater than zero. So it contradicts with
the assumption.

Thus, theoretically the particle will never stop at xG when
xG 6= x∗.

By Lemma 3, we can prove that a particle will finally get to
a position that is at least better than the current global best if
given enough run time in a unimodal case. We have Theorem
4.

Theorem 4. In a unimodal case, when f(xG) < f(x∗), a
particle will almost surely find a x̂∗ that f(x̂∗) > f(xG).

Proof. Because a particle cannot stop at x(k) = xG = xP .
We will show it will finally arrives into a region that f(x) >
f(xG).

As in Figure 5, the solution space can be divided into three
types of regions by the global best and the personal best. Any
global-best or personal-best update triggers a re-division.
• f(x) > f(xG) Once a particle gets into the region, it

updates the global best and the personal best, and becomes
a leader particle.

• f(xG) > f(x) > f(xP ) Once a particle gets into the region,
it updates only the personal best. The solution space is re-
divided.

• f(x) < f(xP ) When a particle is in the region, it only
moves as a random walk.

Solution
space

Fitness
space

Global
best

Personal
best

Fig. 5: How global best and personal best divide the solution
space.

The movement of a particle is determined by the region of
the solution space it moves in. The region transition forms
a Markov process. The states of the Markov process can be
defined as

• A [f(x) ≤ f(xP ) ≤ f(xG)]
• B [f(x) = f(xP ) ≤ f(xG)]
• C [f(x) = f(xP ) ≤ f(xG) ∧ v > 0]
• D [f(x) = f(xP ) ≤ f(xG) ∧ v = 0]
• E [f(x) > f(xP ) = f(xG)]
The Figure 6 shows the state transitions. When the particle

is in state A, it follows a random walk with attractions to
the global best and personal best. In state B, it means that
the particle finds a better personal best. In state C, the particle
moves into the current global best, but the velocity is not zero.
The only chance that the particle cannot find a better global
best happens when it gets into state D.

A

B

C

D

E

Fig. 6: The state transition of the movement of a particle.

In Figure 6, the state will almost surely move into state
E. It means that the particle will almost surely find a better
solution.

C. Multi-Modal Fitness Distribution

When the movement of a particle is bounded, there are
multiple cases where the particle cannot reach the region that
contains a better solution. The exploration range is determined
by a bound on a particle’s movement. We are interested in the
way in which a particle can get closer to the optimal position
x∗. We have Lemma 4.



Lemma 4. The bound of a particle’s movement can be either

|x(k)− x∗| < max(β∗(x(0)− x∗, k),

γ∗(max(|xG − x∗|, |xP (k)− x∗|))),
(11)

or

|x(k)− x0| < γ0(max(|xG − x0|, |xP (k)− x0|)), (12)

in which β∗ is KL-function , γ∗ and γ0() are K∞-functions.

Proof. These can be obtained by applying x∗ and x0 to
Corollary 1 in [5].

Lemma 4 shows that the boundary of a particle’s movement
is determined by where the global best xG and the personal
best xP (k) locate.

As we are interested in the probability that a particle gets
into a position that is better than the current global best, we
hope the distance between current position and the optimal is
smaller than that from the global best to the optimal.

If the bound on the particle’s movement does not contain
a solution that is better than the personal best, the personal
best and the global best have no chance to be updated and
the particle will not be able to find a better solution. We have
Theorem 5

Theorem 5. If ∀s ∈ {s| |s − x(0)| < γ0(max(|xG −
x0|, |xP (k) − x0|))}, f(s) < f(xP ), the probability that a
particle finds a better solution is zero.

Proof. Because a particle has no chance of getting into any
position that has better solution than the global best and the
personal best. Thus the boundary will also not be changed.

In order to measure how likely a particle can move to a
position that f(x) > f(xG), we can indirectly measure the
probability that |x(k) − x∗| < |xG − x∗|. We then have
Corollary 1.

Corollary 1. If there exists a boundary function γ() that

P (| − x∗| < |xG − x∗|)

> 1− γ(max(E(|xG − x∗|), E(|xP (k)− x∗|)))
|xG − x∗|

.
(13)

Proof. By Markov’s inequality, we have

P (|x(k)− x∗| ≥ |xG − x∗|) ≤ E(|x(k)− x∗|)
|xG − x∗|

. (14)

By the mean of the position update component (details in
Section 4.2 in [5]) we can have the boundary of the mean

E(|x(k)− x∗|) ≤ γ(max(E(|xG − x∗|), E(|xP (k)− x∗|))),
(15)

in which γ() is the boundary function.

P (|x(k)− x∗| < |xG − x∗|)
=1− P (|x(k)− x∗| ≥ |xG − x∗|)

>1− E(|x(k)− x∗|)
|xG − x∗|

>1− γ(max(E(|xG − x∗|), E(|xP (k)− x∗|)))
|xG − x∗|

.

(16)

There always exits a monotonic function that bounds a
fitness function, we can measure the probability that a particle
finds a better solution, which is given in Theorem 6.

Theorem 6. Given a region R of |x− x∗| < ε is monotonic,
x(k) ∈ R and xG ∈ R, the probability that a particle finds a
better solution is P > 1− γ(max(E(|xG−x∗|),E(|xP (k)−x∗|)))

|xG−x∗|

V. SWARM ANALYSIS

The movement of a particle is equivalent to a random walk
in an attractive potential field defined by its personal best and
the global best. There are a few factors that prevent a particle
from reaching the optimal. Organizing particles into a swarm
enhances the capability of optimal search. A swarm means
that particles are randomly initialized in a search space, and
search simultaneously in a beam-search style. An interaction
topology is also formed that adds information exchange to
a beam-search style optimization, which upgrades the search
capability. In this section, our analysis is based on the star
topology of global-best update. Such a star topology shapes a
competition among the particles. A particle that finds a new
global best becomes a leader particle, as in Figure 1.

As we can see in Figure 2b, the system of a swarm can
be viewed as that the global best update component provides
a global best xG and feedbacks into individual particle. The
rule of the global best update component is the same with
that of the personal best update component, as defined in
Equation (2b). Several properties of the personal best update
component can be inherited here. We have Lemma 5. The
proof is the same with the proof of Lemma 1.

Lemma 5. If there exist K∞-functions α1() and α2() that
f(x∗) − α2(|x|) ≤ f(x) ≤ f(x∗) − α1(|x|), the global best
update component is input-to-state stable.

By Lemma 5, we can derive Theorem 7.

Theorem 7. If f(x∗) − α2(|x|) ≤ f(x) ≤ f(x∗) − α1(|x|),
and the position-update component of a particle is input-to-
state stable, and there exist a boundary function γs() for the
global best update component and a boundary function γp()
for the particle component that γs ◦ γp(s) < s, , the particles
in the swarm will converge to x∗.

Proof. When both the particles and the global best update are
input-to-state stable, it forms a cascade connection of input-
to-state stable components as in Figure 2b. Thus we can have
the particles all gradually converge to x∗, by Corollary 4.2 in
[17].

Figure 7 shows an example that contains a stable case and a
unstable case on a multi-modal fitness distribution. In Figure
7a, the swarm failed in finding the optimal due to the unstable
component caused by the parameter selection.

As we know, when xG(k) = x∗, a swarm falls into only
a set of particles without interactions. Then each particle
becomes randomly wandering to fix the inconsistency between
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Fig. 7: The search process of a swarm on a DeJong F4
function [18].

the personal best and the global best, which leads to a
convergence to the optimal x∗. The analysis of a swarm’s
behavior depends on how the global best xG of the swarm
converges to x∗.

In a unimodal fitness distribution, as long as a better solution
is guaranteed to be found, the optimal solution will be found
by the monotone convergence theorem 3. For a single particle
xG = xP , however in a swarm there will be at least one
particle with xG(k) 6= xP with probablity 1. Thus, over
time, there will be refinements that will not stop till the
optimal is reached. We have Theorem 8 for a unimodal fitness
distribution.

Theorem 8. In the unimodal case, given a swarm of more
than two particles, xG converges to x∗ if all the particles
have input-to-state stable position update components.

Proof. There are two cases, (a) xG = x∗ and (b) xG 6= x∗. (a)
When the global best is x∗, the particles will converge to x∗ by
Theorem 3. (b) When the global best is not x∗, xG converges
to x∗. This can be proved using contradiction. Assume that
xG will not converge to x∗. It means that at least more than
one particle stop finding better solution. This contradicts with
Theorem 4.

There will be iterations where the particles may not find
better solutions, however, working in a swarm will enhance
the search capability. We have Lemma 6.

Lemma 6. The probability that a swarm finds a better solution
is higher than the probability that any particle in the swarm
does. The more particles there are in a swarm, the higher
probability that the swarm will find a better solution in any
given iteration.

Proof. Define a swarm of N particles. Let Ps be the proba-
bility that a swarm finds a better solution. Let Pi, i ∈ [1, N ]
be the probability that i−th particle finds a better solution.
We can have Ps = 1 −

∏N
i=1(1 − Pi). By writing it as

Ps = 1−(1−Pi)
∏N
j=1,j 6=i(1−Pj) and

∏N
j=1,j 6=i(1−Pj) ≤ 1,

we have ∀i ∈ [1, N ], Ps > Pi.
If a new particle is added to the swarm, we have Ps′ =

1− (1− Ps) ∗ (1− Pi+1). Similarly, Ps′ ≥ Ps. Thus we can

3https://en.wikipedia.org/wiki/Monotone convergence theorem

say that the increase of the particle number will not decrease
the probability that the swarm finds a better solution.

Expected improvement of a search at one iteration can be an
indirect way of measuring the convergence rate of the search.
Define ∆ = f(xG(k + 1)) − f(xG(k)) as the improvement
of the search at one iteration. The mean of ∆ indicates the
general convergence rate of different position.

Theorem 9. A swarm has at least as as high expected
improvement as any particle at single iteration.

Proof. Define p(∆ ≥ ∆c | xi(k)) as the probability of having
improvement larger than or equal to ∆c given particle i’s
position xi(k), and p(∆ ≥ ∆c | x1(k) · · ·xN (k) as the
probability that the swarm has improvement larger than or
equal to ∆c given all the particles’ positions. The improvement
∆ ∈ [0, f(x∗) − f(xG(k))]. We can have the mean of ∆

for particle i as E(∆ | xi(k)) =
∫ f(x∗)−f(xG(k))

0
∆p(∆ |

xi(k))d∆ and that for the swarm as E(∆ | xi(k)) =∫ f(x∗)−f(xG(k))

0
∆p(∆ | x1(k) · · ·xN (k))d∆ By Lemma 6,

we have p(∆ | x1(k) · · ·xN (k)) ≥ p(∆ | xi(k)). We know
that Es(∆) ≥ Ei(∆), which means that the swarm has a
higher expected improvement than any particle.

In addition to the speed with which the optimal solution
can be found, we are also interested with the convergence of
a swarm. Theorem 9 leads to Corollary 2 that the convergence
rate of a particle is accelerated in a swarm.

Corollary 2. A swarm structure yields higher expected con-
vergence rate of particles than a set of particles running
separately.

Proof. By Theorem 9, the swarm has a higher expected im-
provement. With the global best converging faster, the particles
can all converge faster as well.

For multi-modal fitness distributions it is more difficult
prove properties of convergence, but Theorem 7 provides a
condition where a swarm can converge to the optimal and
which applies to a multi-modal fitness distribution as well
as the unimodal case. In addition, Theorem 6 provides the
probability that a particle can find a better solution in the
unimodal case. Applying it to a particle in the optimal modal
region (a “hill’ within a multi-modal landscape) yields a lower
bound of finding the optimal. Because of the competitive
leader-follower behavior of PSO, whether a swarm can find
the optimal depends on whether particles in the optimal modal
region can win the competition. If particles in a suboptimal
modal region dominate the competition, it is possible that
particles in the optimal modal region will be diverted into
suboptimal modal regions by Lemma 4. Similarly, particles in
a suboptimal modal region might move into the optimal modal
region. Since either of these are possible in the multimodal
case, it is hard to guarantee behavior.



VI. CONCLUSION

In this paper, we model particle swarm optimization using
a network structure. The particles in the swarm form a
parallel connection with a global-best update as feedback.
The dynamics of each particle has also been decomposed into
an input-update component and a position-update component.
This decomposition enables us to apply input-to-state stability
analysis to PSO. We provide the conditions that guarantee
various convergence properties. Our analysis starts from the
particle level and then extends to the swarm level.
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