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ABSTRACT

An important part of expressing human intent is identify-
ing acceptable tradeoffs among competing performance ob-
jectives. We present and evaluate a set of graphical user
interfaces (GUIs), that are designed to allow a human to
express intent by expressing desirable tradeoffs. The GUIs
require an algorithm that identifies the set of Pareto opti-
mal solutions to the multi-objective decision problem, which
means that all the solutions are equally good in the sense
that there are no other solutions better for every objective.
Given the Pareto set, the GUIs provide different ways for
a human to express intent by exploring tradeoffs between
objectives; once a tradeoff is selected, the solution is cho-
sen. The GUI designs are applied to interactive human-
robot path-selection for a robot in an urban environment,
but they can be applied to other tradeoff problems. A user
study evaluates GUI designs by requiring users to select a
tradeoff that satisfies a specified mission intent. Results of
the user study suggest that GUIs designed to support an
artist’s palette-metaphor can be used to express intent with-
out incurring unacceptable levels of human workload.

Keywords

Keywords: human-robot interaction, multi-objective deci-
sion making, user interface design, robot path-planning

1. INTRODUCTION

An important part of specifying human intent is iden-
tifying acceptable tradeoffs among competing performance
objectives. In a multi-objective problem with conflicting
performance objectives, the set of Pareto optimal solutions
is precisely the set of all possible solutions that satisfacto-
rily tradeoff between the different objectives. Recall that a
solution is Pareto optimal if, roughly speaking, there is no
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other solution that is better for every objective. Since each
Pareto solution represents a potentially acceptable tradeoff,
specifying intent is roughly equivalent to selecting a desir-
able Pareto optimal solution.

When a human selects a single solution, making tradeoffs
between the objectives creates the need for a robust and in-
tuitive interface that allows a user to select a satisfactory
tradeoff without imposing high workload. In a supervisory
control problem, given a scenario of (a) what needs to be
done — the strategic intent to be accomplished — and (b) a
set of ways that a task can be performed, the human (c) de-
termines “how” the task will be done using a GUI.

This paper presents three possible GUI designs that pro-
vide a medium to explicitly express human intent for how a
task will be done given a set of objectives expressed as ad-
verbs; the adverbs convey what could be important in how
the task can be done. The GUI designs allow the human to
evaluate different solutions and select one that best matches
strategic objectives of the problem. The work in this paper
builds from prior work on using Pareto Analysis for explor-
ing tradeoffs [20], which defines the problem as follows:

The solution points [in] the Pareto [Set] are
mathematically indifferent with respect to each
other, and thus the selection phase ... is sub-
jectively driven by the human decision maker.
This process involves exploration of the [Set], and
eventually, the challenge in selecting a solution is
to account for gains and losses while adhering to
personal preferences.

We discuss different GUI designs and a user study that
compares these designs. Generally speaking, the GUI de-
signs are based on the metaphor of an artist’s palette, where
an artist mixes different colors to produce a desired hue.
The adverbs correspond to different objectives to be accom-
plished; each adverb is a different color, and the mixes of
colors represent different tradeoffs between objectives. For
example, in a robot path-planning application, consider a
command for a robot to “Go quickly and safely from point
A to point B.” The adverbs associated with these objectives
are “quickly” and “safely”. Like an artist, the operator can
mix the adverbs on the interface such that a single path
is selected that is both quick and safe from a set of avail-
able paths. Results of a user study demonstrate that this
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metaphor can be very useful for helping a human find ac-
ceptable tradeoffs between competing objectives.

Figure 1 shows an example Pareto-optimal set for a two-
objective problem. Each point in the curve represents a
solution and its associated pay-offs for objective 1 and o0b-
jective 2. The upper left dot represents a solution that has
maximum pay-off for objective 2 at the expense of objective
1, and lower right dot represents a solution that has max-
imum pay-off for objective 1. Dots between the extremes
represent tradeoffs between the objectives.
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Figure 1: Path Planning with MORRF* for two objectives.

The paper presents GUI designs, palette, sliders, and prism,
that are based on the color-blending metaphor and that can
be generalized to many problems that require tradeoffs. A
fourth GUI design, waypoints, is specific to path-planning.
The three color-blending designs are described later in the
paper.

We apply the GUIs to a robot path-planning problem
where multiple performance objectives need to be satisfied.
Although there exist many algorithms for multi-objective
optimization (see, for example, [16, 6, 7, 25, 15, 2]), we use
the MORRF* algorithm [25] because it efficiently generates
Pareto optimal solutions specifically for path-planning.

Figure 2 shows an example of one of the designs in AP
(the palette design) applied to robot path-planning. The left
panel of the interface is problem-specific and shows the avail-
able alternatives/solutions for the problem. The right panel
allows the human to express intent; it is the area where the
human can explore many tradeoffs. Based on the human-
actions on the right, the left panel updates to show the re-
sult/solution. For example, the left side of Figure 2 depicts
a map that shows in gray Pareto optimal paths that a robot
can take, and the right side of the interface provides an area
that can be used by the human to find tradeoffs among the
paths. Based on the command issued on right side panel,
one of the gray paths gets highlighted on the left panel.

2. RELATED WORK

Making tradeoffs in decision-making is also known as mul-
tiple criterion decision-making [24] and multiple attribute
decision-making [13]. The goal is to select a decision over
available alternatives in a way that balances or trades off
between the objectives, i.e, to choose from among a finite
set of discrete alternatives [10, 20]. This paper uses three
objectives: minimizing distance from the robot’s start loca-
tion to a goal location, avoiding exposure of the robot to one
or more enemies, and avoiding collisions with obstacles.

The literature on designing user interfaces for human-
machine interaction is vast (see [12, 14, 8, 4, 1] for some
examples). There are indeed many graphical interfaces for
managing robots in HRI [11, 18, 17, 21]. The interface in
the paper differs from these other interfaces in that it is in-
tended to enable interactive decision-making in selecting a
solution that satisfies a decision tradeoff. The interfaces in
this paper is more similar to decision-support systems than
to traditional supervisory control interfaces.

The GUIs presented in this paper are perhaps best clas-
sified as ecological interfaces [23, 5] because they seek to
enable decision-making easier and more intuitive for a hu-
man using a natural metaphor, in this case, a color palette.
The metaphor is designed to help a human create a mental
model of the tradeoffs and how changing from one solution
to another alters how tradeoffs are balanced [22]. The three
objectives that we consider are represented by the colors red,
green and blue respectively, and the problem domain is su-
pervisory control of a remote robot. Designing interfaces for
supervisory control is an important part human-robot inter-
action (HRI), and designing intuitive and efficient interfaces
has been a challenging issue in HRI [9, 11].

3. ADVERB PALETTE

The Adverb Palette (AP) designs are mouse-based inter-
active GUIs designed to help a human express intent over
Pareto optimal tradeoffs. AP interfaces help a user to trade
off among objectives in a way a painter selects colors from
a given set of colors. A blend/mixture of colors corresponds
to a single tradeoff from the available Pareto optimal trade-
offs. The AP designs are general enough to work for many
problems with tradeoffs, and the designs and evaluation are
applied to robot path-planning.

The path planning problem is for a robot to go from a start
location xinis to a goal location xgoa1 within a configuration
space (in this paper, a 2-D world). Each GUI has two parts:
the map in the left panel, which is a task-specific interface
that aids visualization of paths, and the command interface
(CI) in the right panel, which is a general-purpose inter-
face that a user can use to balance different adverbs. The
command area allows a user to express intent by balancing
tradeoffs, and the map gets updated to show task-specific
details by highlighting the corresponding path.

Consider three adverbs, Quickly, Stealthily, and Safely,
symbolized by colors red, green and blue, respectively.

e Quickly: prefer shorter paths.
e Stealthily: avoid being viewed by enemies.
e Safely: stay away from obstacles.

Given the Pareto optimal solution set, the goal is to enable
a user to find a tradeoff that best expresses his or her intent.
Expressing intent has two subproblems to be solved:

1. express a desired tradeoff, and
2. map the tradeoff to a Pareto optimal solution.

We focus on the aspect of human intent that requires satis-
factory tradeoffs between competing objectives.

All interfaces include a task-specific map that shows all
the routes (paths) in gray. Before tradeoffs are explored,
a highlighted path is displayed that gives equal preference
to all the adverbs. This paper refines intial palette, sliders,
and waypoints from prior work [19] and introduces the prism



design. This paper also discusses the mapping from intent to
solution, and evaluates the designs through a user study. We
begin by discussing how to condition the objectives so that
they can be expressed using the color-blending metaphor.

3.1 Conditioning Objectives

Objectives may be expressed in incommensurable units,
and this causes problems for using the palette metaphor. We
perform an affine transformation and normalize objectives
so that the multiple objective criterion can be reasonably
compared.

Let S denote the set of Pareto optimal solutions, and let
the costs associated with a particular solution s; € S and
objective k € {1,..., K} be denoted by cx(s;). (Please check
our prior work [19] for cost functions computations applied
to robotic path planning).

For each solution, we convert the solution costs to solu-
tion pay-offs by multiplying by —1 yielding pay-offs for each
objective pi(s;) = (—1)ck(s;) and then normalize them to
0, 1]

pr(s;) — mins,es{pr(se)}
maxs,es{pk(se)} — mins,es{pr(se)}’

Pr(ss) =

The corresponding normalized vector p(s;) € [0,1]¥ for a
solution is thus given by

p(s;) = [p1(s;), ba(s), -+, pxc(55)]" 1)

3.2 Palette

The palette displays three initial circles called the “pri-
mary dabs,” one for each adverb (objective). The user ex-
presses intent by clicking on one of the primary dabs (e.g.,
take the shortest path) or creates tradeoffs by dragging and
dropping adverbs color dabs into the white area of the CI
to create smaller circles called “paint dab” that blend colors.
By creating different paint dabs and then exploring how each
dab corresponds to a different path, a user can visualize the
consequences of different commands. Line segments con-
nect either the primary dabs and paint dabs or paint dabs
to other paint dabs, producing a tree structure that allows
the human to see the proportions of each objective.

Figure 2 shows an example command where the user de-
sires a path that is quick and safe but does not care about
being seen by enemies, which is represented numerically as
“50% quickly, 0% stealthily, 50% safely ”. The pie graph on
the lower left area in the CI shows the proportion of each
objective in a particular paint dab. Blending in multiple
adverbs (colors) is thus equivalent to making tradeoffs with
multiple objectives. The default magenta paint dab in Fig-
ure 2 is an equal mixture “33.33% quickly, 33.33% stealthily,
33.33% safely”.

Let dabg represent any paint dab on CI. Let n; be the
number of times the user has dragged adverb i on dabg,
where 0 > ¢ < K. The total number of drags a user makes
for dabq is n = Zf{:l n;. The user’s intent from the palette
is the vector AP
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3.3 Sliders

Figure 3 shows the sliders interface. The user adjusts the
trackbars to get to a desired mixture, and the correspond-
ing solution/path from the left panel is selected. The three
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Figure 3: Adverb Palette: Slider interface.

sliders represent the three adverbs. The user can issue any
of the three primary commands to the robot (e.g., take the
shortest path) by sliding the corresponding slider (e.g., red)
to the maximum units. The sum of the units on the sliders
does not exceed 100 units, so if the red, green, or blue sliders
are at say 33, 33, 34 units respectively, then moving the blue
slider to 60 units will cause a change to the slider units to
20, 20, 60 units respectively. Unlike the palette, the user can
explore different tradeoffs while moving a slider, and set-
tle down to a certain position if she desires it. As the user
moves one slider the other two sliders move automatically
to maintain the sum to 100 units, and the corresponding
solution/path gets shown on the map.

Let s; is the score specified by slider . The maximum unit
on a slider corresponds to the cheapest solution for that
objective and the minimum unit corresponds to the most
expensive solution. The human intent can be represented
as a vector h* as:

7sli S1 S2 SK 1T
B [100’100""’100] ®)

3.4 Prism

Figure 4 shows the prism interface. Here the user can
move the mouse over different areas of prism and discover
its associated paths. Each point on the prism is a color cor-
responding to a certain proportion of adverbial objectives,
expressed using a barycentric coordinate system.

As a review of barycentric coordinates, consider a triangle
defined by three vertices, R, G, and B. Any point P inside
or on the triangle can be written as a unique convex combi-
nation of the three vertices. Figure 5 illustrates the concept.
The dots on the edges and those inside the triangle are exam-
ple points that P may take. For a point P there is a unique
sequence of three numbers such that the sum of these three
numbers is 1. The three numbers, denoted by «, 3, and ~
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Figure 4: Adverb Palette: Prism interface.
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Figure 5: Barycentric coordinates on an equilateral triangle.

indicate the barycentric coordinates of point P with respect
to the triangle. In the prism interface, «, 3, and  represent
the proportion of quickly, stealthily, and safely, respectively.
Intent for the prism is represented as

=[a,8,7". (4)

The prism interface only works with three coordinates, and
is therefore limited to three objectives.

ﬁpri

3.5 Waypoints

The waypoints interface is path-planning specific while the
other three interfaces are generic AP designs. The waypoints
interface assists a user to construct her own path on the map
by allowing her to provide location guidelines that the robot
should visit while taking a path. Unlike the other three in-
terfaces, the user here does not make a tradeoff among the
available paths from the algorithm but instead makes her
own path on the map. She can however compare her path
with the best or worst with respect to an adverb based on
the Pareto optimal paths’ best and worst for that particular
adverb. Figure 6 shows a path constructed using the way-
points interface. The graphs on the right panel show how
well the user-created path compares to the best and worst
objective scores from the solutions in the Pareto set.

4. MAPPING BETWEEN STRATEGIC IN-
TENT AND PAY-OFFS

The palette and sliders interfaces produce a human in-

tent vector denoted by ppal — [hl,hg,...,hK]T and A =

[s1, s2, ...,SK]T7 respectively. The prism interface produces

the intent hP" = [, 3,7]T. We can interpret this trade-
off in a vector space by associating intent with an orienta-
tion/direction with respect to some reference frame. More
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Figure 6: Waypoints interface.

precisely, we operationally define intent as a vector h that
represents an ideal tradeoff, that is the balance between com-
peting objectives that the human wants to achieve.

The multi-objective optimization algorithm gives a pool
of possible solutions. Since each Pareto optimal solution has
pay-off values associated with it, it can also be represented as
a payoff vector using Eq. (1). Thus we have two vector rep-
resentations, a human intent vector and the Pareto-optimal
solution expressed as a payoff vector.

Given the human intent h and the payoff vector for ev-
ery Pareto optimal solution, we need a mechanism to match
the intent to one of the solutions. Intuitively for H, the so-
lution that has each of the individual pay-off values most
closely matching to the corresponding individual intent val-
ues would be the one that would be finally selected. The
mapping between the tradeoff point and the solutions would
then be defined as closeness of the intent to the Pareto op-
timal solution.

We subjectively evaluated four different mapping strate-
gies. Two of these strategies, WPM and TOPSIS are de-
tailed in [3]. The others that we considered are the popular
methods euclidean distance and cosine similarity for finding
similar or matching entities. TOPSIS, WPM, and cosine
similarity all gave the same results for mapping. Cosine sim-
ilarity is the most simple, and subjectively produced better
results than euclidean distance.

The cosine similarity between a path vector, p(s;) and the

human intent vector is h is L(S”
IR INlpCs )

the solution p(s;) ends up with the same orientation, then
they have the cosine similarity of 1, and if they are at, say,
90° apart then they end up with the cosine similarity of 0
indicating that they have nothing in common.

Consider Figure 7. The triangle represents the set of pos-
sible tradeoffs. Each of the dots on the triangle represents
a human intent, and each of the dots to the upper right of
the triangle represents a Pareto optimal solution. The dark
vectors represent the objective forming the space, stealth,
safety, and quickness. The other vectors represent intent
and solution vectors. 6; represents the cosine similarities
between the intent vector hex and the solution vector p(s;)

For the given h, if

S. OBJECTIVE FUNCTIONS

Solving multi-objective optimization problems require com-
puting costs or pay-offs for the involved objectives. Since
here we apply AP to robot path-planning, we briefly de-
scribe in the following paragraphs the costs computed for a
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Figure 7: Path Comparison w.r.t example human intent vec-
tor hex.

particular robotic-path. Recall that for this application we
consider three costs; quickly, stealthily and safely.

A safe path is a collision free path. Hence, the safety
cost of a robot location in a configuration space is encoded
as a function of inverse distance between the robot position
and the nearest obstacle in that space. The cost can be
computed for every possible point in the configuration space.
Therefore, the safety cost of a particular robotic path is
the accumulation of the safety cost of individual points that
make the path; see Figure 8a for an example safety cost for
the polygonal obstacles — darker colors are safer.

(a) Safety cost for every robot location.

(b) Stealth function with three enemies.
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(c) Path ALMNOB is quicker than the path AXYB.

Figure 8: Objective functions.

A stealthy path is less likely to be detected or seen by en-
emies in the world. The stealth cost function is expressed in

terms of the probability of the path being seen by the enemy,
and is computed as a function of two factors: the distance of
the robot from each of the enemies and the visibility of the
robot from the enemies. The resulting effect yields detection
likelihood of the robot from the enemies. The stealth cost
can thus be determined for every possible point of the robot
location in the configuration space. Therefore, the stealthy
cost of a path (starting from the initial state to the goal
state) can be determined as the sum of the stealthy costs of
individual points constituting the path. Figure 8b illustrates
a world with three enemies and its corresponding stealthily
objective function. If the robot has to travel from the top
left corner to the bottom right corner of the configuration
space, a path that goes between the obstacles and lower part
of the space is more stealthy than a path that goes through
the left side of the left obstacle in the space.

A quick path minimizes path length (assuming constant
robot speed). The ‘quickly’ cost is the euclidean distance
between the start and the goal position such that the ob-
stacles do not intercept the path. Figure 8c shows two path
options going from start location A to goal location B. The
path distance of the path formed by points ALMNOB is
less than the path distance for AXYB, hence the orange
path is comparatively quicker than the blue path.

6. USER STUDY

Following a pilot study among university students to refine
the AP designs, we conducted an IRB-approved user study
to evaluate the four GUI principal designs. The aim was to
discover how successful would be the user in finding tradeoffs
among the given solutions using the GUI designs.

Participants were invited for a one-hour study through an
advertisement posted in various departments of the univer-
sity. 24 people participated, 17 males and 7 females, with a
mean age of 24.8. All but one participant was a university
student. The participants belonged to diverse majors includ-
ing food, film, elementary education, nursing, and computer
science. Each participant received $15 as compensation. All
participants completed all the tasks assigned for the study.

6.1 User Study Procedure

After completing the informed consent process, each par-
ticipant completed a short demographic questionnaire that
included questions on familiarity with using a mouse, expo-
sure to video games, age, and education. The participant
then watched a 19 minute video tutorial that described the
four GUI designs and showed how to use them in response
to a particular scenario or task. Participants were issued a
command in written English for the robot to perform such
as:

It is critical to the commander that the robot
takes a quick and safe path. Enter the high-
lighted path number as per this command.

Following the training, participants executed four sets of
practice tasks, one for each interface. The practice tasks
and the world on which practice tasks were carried out were
identical for each interface. Each practice task had an ideal
path indicated by a path number, and the task was designed
in a way that the user could easily figure out this path on
the map in response to the command. The user was allowed
three practice attempts to choose the correct path.
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(a) Easy world/command: “Issue a command that makes the robot

reach its goal as quickly as possible. Enter path number below.”

(b) Hard world/command: “It is critical to the commander that the
robot takes a path that hides the robot from enemy and that does not
come close to buildings. The commander doesn’t care if the distance

from the start to the goal is big. Enter path number below.”

Figure 9: Difficulty level: (a) Easy and (b) Hard.

The experiment was a two-factorial experiment with fac-
tors being interface type (palette, sliders, prism, waypoints)
and difficulty level (easy, hard). The difficulty level is a
function of two components: The first component is fairly
general, namely, choosing a tradeoff is harder if it has to deal
with more objectives/adverbs. The second component is
task specific, namely the number of obstacles in the worlds.
Hard tasks demand tradeoffs that involve multiple objectives
(more than one) and have more obstacles, and easy tasks de-
mand tradeoffs on at the most only two objectives and have
fewer obstacles. Four sets of easy tasks and four sets of hard
tasks were designed (two tasks in each set), allowing unique
pairings of interfaces and worlds. Figure 9(a) and (b) show
an example of an easy and hard task, respectively.

Subjective Workload: NASA TLX Scores. Each
participant evaluated tasks using all six categories of the
NASA TLX questionnaire: mental demand, physical demand,
temporal demand, performance, effort and frustration.

Interface Appeal. After completing all tasks, partici-
pants ranked the interfaces that reflected their preference
for three categories, ranked from most preferred to least
preferred. The categories are how appealing the interface
is, how easy the interface is to use, and how time-consuming
the interface is to use.

Objective Metrics. In addition to subjective workload
and user preferences, we evaluated the AP designs using
three objective metrics. In each task, a command was given
to the participant via the user interface; the command was
constructed to describe an ideal path. The first metric eval-
uates how well participants could express tradeoffs, and the
other metrics included both expressing tradeoffs and select-
ing paths.

e Accuracy quantifies the degree to which the trade-
off /solution selected by the user matches the intended
tradeoff. Accuracy is measured as the cosine similar-
ity between the intended tradeoff vector and the user-
selected tradeoff vector.

e [Interface time is the time spent performing all tasks
required in a particular interface and world.

e Answer time is the time spent executing the tasks.
For each individual task, answer time is captured from
the first click or drag made on the GUI interface to the
last click or drag made on the interface. It excludes the
time spent to type in the answer for a task. The answer
times for each individual tasks are then added to get
the total answer times for all tasks on an interface for
a particular world.

Participants were not given feedback on whether they ex-
ecuted the tasks correctly or not, and the order of inter-
face/difficulty level was counterbalanced.

6.2 Hypothesis testing
We evaluated the following hypothesis:

1. Hypothesis 1: Each AP interface design can be used
to successfully complete all assigned tasks.

2. Hypothesis 2: Hard tasks have longer completion times
and higher subjective workload than easy tasks.

3. Hypothesis 3: The interfaces palette and prism would
produce the lowest workload and shortest completion
times.

7. RESULTS

Hypotheses were tested using SAS with Restricted Maxi-
mum Likelihood Estimation for a mixed-design ANOVA us-
ing Tukey-Kramer adjustment on subjects.

7.1 F statistics

Table 1 shows the effect of interface, difficulty level, and
the combined effect of interface and difficulty on different
measures/metrics of user’s interaction. The asterisk * de-
notes significant differences. There were significant differ-
ences in interface design and difficulty, but there were few
differences for interface plus difficulty level.

7.1.1 Accuracy

Sliders =
Prism - }7 o
Palette - ® @ [ B
! ! ! !
40 60 80 100

Figure 10: Accuracy of different interfaces.

The waypoints interface was statistically less accurate than
all other interfaces, and the other three interfaces had no
statistically significant differences; see Figure 10. Difficulty
level had no effect on accuracy.



Metrics Interface (I/F) Difficulty (DL) I/F x DL

F Value | Pr>F | F Value | Pr>F F Value | Pr > F

Accuracy 4.28 0.006* 0.02 0.885 3.42 0.018*
Answer Time 44.24 < 0.001* 2.32 0.13 0.16 0.93
Interface Time 98.20 < 0.001* 6.39 0.013* 0.10 0.962
Mental 27.02 < 0.001* 2.33 0.129 0.29 0.832
Physical 8.77 < 0.001* 0.07 0.788 0.16 0.923
Temporal 12.08 < 0.001* 1.25 0.266 0.39 0.762
Performance 17.33 < 0.001* 11.47 < 0.001* 0.32 0.81
Effort 26.05 < 0.001* 5.66 0.0185* 0.21 0.887
Frustation 13.39 < 0.001* 0.87 0.352 0.27 0.846

Table 1: Effect of interface, difficulty level, and interaction of interface and difficulty level on various measures.
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Figure 11: Answer Time in seconds on different interfaces.

Interface | Interface | t value p
Palette Prism -4.31 | <0.001"
Palette Sliders -1.43 0.482
Palette | Waypoints | -10.65 | < 0.001*
Prism Sliders 2.88 0.023™
Prism | Waypoints | -6.34 | < 0.001"
Sliders | Waypoints | -9.22 | < 0.001"

Table 2: Pairwise differences in answer time.

7.1.2 Answer Time

Table 2 shows p values for pairwise differences between
interfaces for answer time (negative t value indicates that the
answer time on prism is higher than on palette). Palette and
sliders are similar, prism is statistically slower than palette
and sliders, and waypoints is statistically slower than them
all. Figure 11 illustrates the differences for palette, prism,
and sliders. Difficulty level has no impact on answer time.

7.1.3 Interface Time

Interface | Interface | t value P
Palette Prism -2.48 0.066
Palette Sliders -0.79 0.86
Palette | Waypoints | -15.07 | < 0.001"
Prism Sliders 1.69 0.331
Prism | Waypoints | -12.59 | < 0.001"
Sliders | Waypoints | -14.28 | < 0.001"

Table 3: Pairwise differences of Interface Time.

Except for waypoints, which was signficantly slower, inter-
face type did not affect interface time. Palette, sliders and
prism were not significantly different (see Table 3).

Task difficulty did have an effect on interface time. In-
terface Time for hard tasks was higher than for easy tasks
(t = —2.55,p = 0.0117). Table 4 shows the statistics as a
function of individual interfaces.

1/F Task Interface time

t value p
Palette EvsH | -3.03 | 0.006"
Prism EvsH | -2.92 | 0.008"
Sliders EvsH -2.8 0.01*
Waypoints | 0.689 -0.53 0.603

Table 4: Interface Time on different interfaces. t value com-
puted as E minus H.

7.1.4  Subjective Workload

We used a 20-point scale/score for each of the NASA-
TLX question. Except for the performance scale, a value
of one corresponds to least workload factor and the score of
20 suggests highest workload. For the performance NASA
TLX factor, the highest value is the best. Table 5 shows
the values obtained from the mixed-design ANOVA on the
partcipant’s NASA TLX scores. It is seen that the interface
type affects workload. The palette and sliders have simi-
lar workload profiles. Furthermore, waypoints deviates from
every other interface, and prism deviates from palette and
sliders. Summarizing, the workload increased roughly in the
following order palette < sliders < prism < waypoints.

Difficulty level impacted two NASA TLX scores. Perfor-
mance is significantly worse on hard tasks (¢t = 3.41,p <
0.001). Effort was also significantly worse on hard tasks
(t = 2.40,p = 0.018).

7.2 User Preference

Participants ranked the four interfaces with respect to ap-
peal, ease of use, and time consuming on an integer scale of
1 to 4, where 1 is best 4 is worst. Results showed that all
interfaces show significant differences.

Table 6 suggests that the most appealing interface to the
users was the palette and the least appealing was the way-
points. The suggested order of appeal is palette > sliders >
prism > waypoints.

Each interface differed significantly from the others in
terms of ease of use, with palette being the easiest to use
and waypoints being the hardest. Furthermore, sliders was



I/F I/F Mental Physical | Temporal | Performance Effort Frustration
Palette Prism 0.022* 0.02* 0.089 0.009* 0.009* < 0.001*
Palette Sliders 1 1 0.93 1 0.97 0.98
Palette | Waypoints | < 0.001* | < 0.001* | < 0.001* < .001* < 0.001* < 0.001*
Prism Sliders 0.015* 0.02* 0.018* 0.021* 0.034* 0.002*
Prism | Waypoints | < 0.001* 0.596 0.073 0.011* < 0.001* 0.648
Sliders | Waypoints | < 0.001* | < 0.001* | < 0.001* < 0.001* < 0.001* < 0.001*

Table 5: Pairwise differences for subjective workload computed using NASA TLX. I/F = Interface.

Appeal Ease ofUse Time Cons

I/F I/F t value P t value P t value P
Palette Prism -6.65 < 0.001* -11.4 < 0.001* -13.79 | < 0.001*
Palette Sliders -2.52 0.06 -5.87 < 0.001* -9.19 < 0.001*
Palette | Waypoints | -10.08 | < 0.001* | -20.23 | < 0.001* | -25.66 | < 0.001*
Prism Sliders 4.12 < 0.001* 5.55 < 0.001* 4.6 < 0.001*
Prism | Waypoints | -3.44 0.004* -8.81 < 0.001* | -11.87 | < 0.001*
Sliders | Waypoints | -7.56 < 0.001* | -14.36 | < 0.001* | -16.47 | < 0.001*

Table 6: Pairwise differences between interfaces for appeal variables.

easier than prism, with both lying between the two extremes
of palette and waypoints.

The time-consuming variable for interfaces was very sim-
ilar to ease of use. The p-values suggest that each of the
interfaces differed significantly from each other with palette
being the least time-consuming and waypoints being the
most time-consuming. Furthermore, sliders took less time
than prism, with both lying between the two extremes of
palette and waypoints.

Thus, all the interfaces were different from each other for
the appeal variables, where in each case palette was preferred
to the interfaces with sliders second.

7.3 Discussion

Results indicate that waypoints interface is significantly
worse than the other three. This is not surprising since
the waypoints interface requires participants to both plan
a path and explore tradeoffs. It takes more time, induces
higher subjective workload, and produces paths that differ
significantly from the path intended in the command. We
ignore this interface and discuss the others.

Hypothesis 1. Results of accuracy showed that there
were no significant differences between palette, sliders, and
prism, meaning that the users were able to find an acceptabe
tradeoff using each interface. Each interface produced at
least 90% accuracy, and difficulty level had no impact on
accuracy. We fail to reject hypothesis 1, which suggests
that each user can use each of the interfaces successfully.

Hypothesis 2. Difficult tasks took more time and sub-
jective workload than easy tasks. We therefore find support
for hypothesis 2.

Hypothesis 3. Both palette and sliders produced sim-
ilar interface times, but prism required more time to an-
swer the tasks, thereby making it significantly less effec-
tive. Similarly, both palette and sliders produced similar
subjective workload, and prism had significantly higher sub-
jective workload. The results of users’ preferences demon-
strated that users preferred palette to find tradeoffs among
the Pareto optimal solutions. The interface sliders followed
suit, and then prism. Hence, we reject hypothesis 3. In-
stead palette and sliders were similarly usable, and prism
was significantly more challenging.

We hypothesize that participants found it hard to compre-
hend the mixing of adverbs through prism. Note that prism
used the same optimal solutions that the palette and the
sliders used, but participants found it hard to know where
to click on the prism to get the solution for a task.

8. SUMMARY AND FUTURE WORK

We have presented four interactive GUI designs for se-
lecting tradeoffs from among Pareto optimal solutions to a
multi-objective optimization problem. The AP interface de-
signs provide a novel way of blending objectives and enables
users to find and express tradeoffs. The user study indi-
cated that the palette and sliders designs were usable and
relatively easy to use because of its metaphor of mixing col-
ors in an artist’s way. A rough aggregation of all measures
suggests a slight superiority for the palette over sliders, and
both were superior to the prism design, presumably because
participants had a hard time understanding this interface.

The results from the waypoints interface design suggest
that providing an interface that explicitly enables a partici-
pant to express tradeoffs is useful. Since expressing tradeoffs
are an important part of expressing human intent, an inter-
face that helps a user to understand and express tradeoffs
may be useful for many problems.

Some of the participants explicitly disliked prism. Future
work should be performed on prism such as naming or scal-
ing the boundaries of the interface so that people can more
easily understand how prism works.

Since the GUI designs presented here only consider three
adverbs, future work should make GUI designs generic so
that they can be applied to a variable number of objectives.
It is possible that mixing more colors will make the interface
less intuitive, so future work should explore the limitations
on the interface as a function of more colors. Also, the
current application was robotic-path planning. Future work
should explore whether the GUI for other applications that
require tradeoffs, such as a social robot that must find a
path so that it balances proxemic concerns with energy or
safety concerns. Finally, future work should explore palette-
based designs that do not rely exclusively on color, adding
redundant cues to aid easier human perception.
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