
Homotopy-Aware RRT* : Toward Human-Robot
Topological Path-Planning
Daqing Yi∗, Michael A. Goodrich† and Kevin D. Seppi‡

Computer Science Department, Brigham Young University, Provo, UT, USA
Email: ∗daqing.yi@byu.edu, †mike@cs.byu.edu, ‡kseppi@byu.edu

Abstract—An important problem in human-robot interaction
is for a human to be able to tell the robot go to a particular
location with instructions on how to get there or what to avoid
on the way. This paper provides a solution to problems where
the human wants the robot not only to optimize some objective
but also to honor “soft” or “hard” topological constraints, i.e.
“go quickly from A to B while avoiding C”. The paper presents
the HARRT* (homotopy-aware RRT*) algorithm, which is a
computationally scalable algorithm that a robot can use to plan
optimal paths subject to the information provided by the human.
The paper provides a theoretic justification for the key property
of the algorithm, proposes a heuristic for RRT*, and uses a set of
simulation case studies of the resulting algorithm to make a case
for why these properties are compatible with the requirements
of human-robot interactive path-planning.

I. INTRODUCTION

In search and rescue, police, and military applications of
human-robot teaming, a human may want to tell a robot to
go to a particular location while giving information that the
robot should use to decide what path to take. This is a form
of interaction that requires a robot to plan a path that honors
the human’s intent. In this paper, we focus on two useful
elements of intent: the shape and quality of the planned path.
Although algorithms exist to implement path properties like
continuity and smoothness, there appears to be no algorithm
that is computationally tractable while being powerful enough
to honor both shape and quality aspects of a path. Such an
algorithm would support human instructions like “go quickly
around building A and then between the two trees while
avoiding region C.” In this paper, we present an algorithm
that optimizes path quality while allowing a human to specify
regions to avoid, preferences for directions of traveling around
obstacles, via-point/waypoint constraints, and reference path
constraints [1].

The contribution of this paper (a) is a computationally
efficient algorithm for detecting when two paths are homotopic
that (b) can be used as a heuristic for an RRT* planner to re-
strict search to a given homotopy class, where (c) the planning
is done by the robot and (d) the optimization criteria and shape
constraint is specified by the human. The specific contribution
to human-robot interaction is that these properties, supported
by simulation results, create a set of path affordances that
allow a human to specify a wide range of shape constraints and
objective preferences that the robot honors in path-planning.

The key to this algorithm is the topological concept of
homotopy, which is a mathematical formalism of the inherent

similarity or dissimilarity of two paths. Given two paths σ1
and σ2 with the same endpoints, if one can be continuously
deformed into the other without encroaching any obstacle
and without moving the endpoints then they are said to be
homotopic [2], [3]. We write this as σ1 ' σ2. In a slight
abuse of notation, we say that two sets of paths are homotopic
Γ1 ' Γ2 if all paths in the sets are homotopic.

We restrict attention to paths that start at a given initial
position xinit and end at a given terminal position xgoal, and
group the set of all such possible paths into classes according
to their shape properties. Formally, the set of paths that are
homotopic to each other form a homotopy class, and the set
of homotopy classes partition the set of all possible paths
between any two positions xinit and xgoal. In an environment
containing obstacles, we argue that this homotopy partition,
provides a mapping between a human-based or colloquial use
of the term “shape” and the corresponding topological notion.

Theoretically, there exist infinite homotopy classes, because
an obstacle can be encircled an arbitrary number of times. With
some loss of generality, we impose the following:

Restriction 1. We consider only “simple paths”, that is, paths
that do not form complete loops around obstacles.

We can now define the problem the algorithm must solve.

Definition 1. Homotopy-Based Optimal Path-Plan-ning Let
X ⊂ Rd denote a bounded connected open set, Xobs ⊂ X
an obstacle space, Xfree = X \Xobs the obstacle-free space,
xinit an initial state , and xgoal a goal state. Define a path
in X as a continuous curve parameterized by s as σ(s) :
[0, 1]→ X . Denote the monotonic increasing cost of the path
as COST(σ). Let H(xinit, xgoal) denote the set of homotopy
classes defined by xinit ∈ Xfree and xgoal ∈ Xfree , H =
h1, · · · , hN ⊆ H a particular subset of homotopy classes,
and h(σ) the homotopy class of σ. The goal is to find paths
σ∗hi
∈ Σ∗, hi ∈ H such that (a) ∀s ∈ [0, 1], σ∗(s)hi

∈ Xfree ;
(b) σ∗hi

(0) = xinit and σ∗hi
(1) = xgoal; and (c) ∀hi ∈

H,σ∗hi
= arg minσ∈Xfree∧h(σ)=hi

COST(σ).

Definition 1 says that, given a particular set of homotopy
classes and a cost function, the planner should find paths that
minimize the cost in the given homotopy classes.

II. RELATED WORK

From the human side of the HRI problem, many researchers
have noted that humans often represent the world using topo-

279978-1-4673-8370-7/16/$31.00 © 2016 IEEE

logical rather than metric-based mental models [4]. Various
methods have been used to create topological representations
that can be used by path-planners for robots [5], [6], [7], [8].
Because these planners represent the relationships between
landmarks as a graph and then plan paths using a graph-search
algorithm, they satisfy strict topological constraints but do not
minimize COST(σ).

Homotopy-based path-planning should enable a combina-
tion of constraints and continuous objectives, but determining
the homotopic equivalence of two paths is usually computa-
tionally expensive or not general. For example, the Voronoi
diagram is used to identify a path from any homotopy class
in [9], but this algorithm has limitations when there are
certain kinds of complex obstacles in the world. A so-called
funnel algorithm in the universal covering space yields an
improvement [10], but complexity does not scale well when
obstacles are not smooth and convex.

Other algorithms for finding homotopic equivalence include
(a) using semi-algebraic cuts to convert a candidate path into
a “word” [11] and (b) converting a plane into a complex
plane and then finding invariant properties of the paths in this
plane [2]. Unfortunately, their performance depends on how
the map is discretized; computation cost expands greatly if the
obstacles are reasonably approximated by a high resolution
discretization.

Homotopies have been used in sampling-based algorithms.
In a probabilistic road map structure, the paths can be catego-
rized into homotopy classes using a method called homotopic
redundancy [12]. Another approach is to divide the space using
a set of reference frames crossing each obstacle [13]. This
method is particularly relevant because, as we shall show,
how a path crosses the reference frames can be represented
as a canonical sequence and comparing the sequences allows
homotopic equivalence to be determined. We extend the ideas
in these algorithms to enable optimal path-planning within
a more complete set of homotopically equivalent paths. To
accomplish this, we use a variation of the bidirectional RRT*
algorithm [14], which is more efficient than the original [15].

III. HOMOTOPIC STRING CLASSES

This section shows how to create a string-based represen-
tation of any simple path, and then use the easy-to-compute
strings to efficiently identify homotopic equivalence.

A. Generating String Representations

Strings are generated using an improved method of Jenkins’
approach [16] to detecting homotopic equivalence of two paths
by separating a map into disjoint subregions [17]. A reference
frame segment, which Jenkins called a reference frame, is a
line segment constructed from a center point and a point in
a obstacle, extended to the map boundaries. The collection of
reference frames created from a set of obstacles partition the
map into disjoint subregions. Figure 1a shows an example of
a map with two obstacles and two reference frames (blue and
green dashed lines) – one for each obstacle. Strings will be
constructed based on the simple idea that if two paths cross

the same sequences of reference frames, then they belong to
the same homotopy class.

S1-1

S1-0
S2-0

S3-0

S3-1

S4-0

(a) Ref. frames

S1-1

S2-0

S3-1

S3-0

S1-0

S4-0

(b) State trans. (ST)

S1-1

S2-0

S3-1

S3-0

S1-0

S4-0

(c) Homotopic ST

Fig. 1: Map with obstacles.

In Algorithm 1, the reference frames R are created from a
set of points that are generated as follows: In a map with a
set of obstacle regions B, an obstacle point bk is randomly
sampled from each obstacle region Bk ∈ B. A center point c
is then randomly sampled in the non-obstacle region Xfree =
X \B subject to the constraint that it is not in any line that
connects two different bk. Connecting each bk with c creates
a radial structure of reference frames that partition the map.

Algorithm 1 INITREFFRAMES (Xfree,B)
1: R = ∅, b = ∅
2: for each Bk ∈ B do
3: b← b ∪ bk randomly sampled from Bk

4: c← Randomly sampled from Xfree

5: while ∃bk, bk′ , c ∈ LINE(bk, bk′) do
6: c← Randomly sampled from Xfree

7: for each bk ∈ b do
8: lk ← LINE(bk, c)
9: {lkm} ← INTERSECT(lk,B, c)

10: R← R ∪ {lkm}
return R

The method LINE(p1, p2) returns the line defined by p1 and
p2, and the method INTERSECT(r,B, c) returns all segments
of line r that don’t intersect with an obstacle in B or the
center point c.

If we assign an ID character to each reference frame, then
how a path sequentially crosses the reference frames can be
converted into a string of ID characters. For example, in
Figure 1a, the path that starts in subregion S4−0 and ends
in subregion S1−1 sequentially visits the reference frames
α1,1, α2,2, α2,3. Concatenating these characters yields the path
string α1,1α2,2α2,3. A deterministic finite automata (DFA)
formalizes this process; see Figure 1b.
Definition 2. Let M = (S,R, δ, S0, ST) be a DFA that
represents the string generation process from a path, where
S is a set of subregions, R is a set of reference frames,
S0 ∈ S is the start subregion, ST ∈ S is the end subregion,
and δ : S×R→ S is the transition function that defines how
one subregion transitions to another subregion by crossing one
reference frame in R. A string v is created as follows:
• v is initialized as an empty string ε.

280

• The path starts at xinit ∈ S0 and ends at xgoal ∈ ST .
• When there is a transition across a reference frame r ∈

R, v ← vr.
Thus, v is the string generated by a path through the map

using M . A string block Γv is the set of all paths that generate
string v. We now develop conditions under which a set of
string blocks partition the set of all simple paths into a set
of disjoint homotopy classes. We present these as a series of
properties, lemmas, and theorems.

Recall that we are restricting attention to simple paths,
and let Γ denote the set of all simple paths. We begin with
properties of paths and the strings that they generate through
M . Property 1 states that there are a finite number of unique
strings generated by M that induce a partition over the Γ.

Property 1. Γ =
⋃m
i=1 Γvi and vi 6= vj ⇒ Γvi ∩ Γvj = ∅.

The second property is that ' is an equivalence relation.

Property 2. ' in Γvi ' Γvj is an equivalence relation.

Property 3 states that two paths are homotopic when they
belong to the same string block Γv . In other words, if σi and
σj generate the same string v, σi and σj are homotopic.

Property 3. ∀σi, σj ∈ Γv, σi ' σj .

Property 4 states that if two touching paths σi and σj are
concatenated together to form σi ◦ σj then M generates a
string vivj that is the concatenation of the strings generated
by the two individual paths vi and vj .

Property 4. If σi ∈ Γvi , σj ∈ Γvj and σi(1) = σj(0) then
σi ◦ σj ∈ Γvivj .

To determine the homotopic equivalence of two paths that
belong to different string blocks, we remove an ambiguity
from M . Observe that the reference frames form a radial
structure emanating from the center point c. We denote the
set of all reference frames segments between the center point
c and an obstacle boundary by Rc and the set of subregions
that connect with the center point c by Sc.

Property 5. A path segment that sequentially crosses several
reference frames in Rc between two different subregions in Sc
is homotopic to a path segment that crosses only the center
point c.

For example, in Figure 2a, two paths with different strings
α2,0α1,0 and α1,1α2,1 indicate two paths in the same homo-
topy class. By Property 5, we have Γα2,0α1,0

' Γc ' Γα1,1α2,1
.

Figure 2b illustrates a second example.
An important consequence of Property 5 is that paths that

only go through regions Sc are homotopic to a simple path
segment that starts and ends at the same position within Sc.
Furthermore, all of these paths are homotopic to a path that
generates the empty string. This means that we can merge all
the subregions in Sc into a new subregion Ŝc. We can now
create a new DFA, illustrated in Figure 1c, that removes the
ambiguity associated with the center region.

(a) Example A (b) Example B

Fig. 2: Equivalence in Homotopy.

Definition 3. Let Mh = (Sh,Rh, δh, Sh0 , S
h
T) be a homo-

topic DFA that represents the string generation process from
a path, where Sh = (S \ Sc) ∪ {Ŝc} is a set of subregions,
Rh = R \ Rc is a set of reference frames, Sh0 ∈ Sh is
the start subregion, ShT ∈ Sh is the end subregion, and
δh : Sh×Rh → Sh is the transition function that defines how
one subregion transitions to another subregion along the path
by reference frames in Rh. Strings are generated as follows:
• v is initialized as an empty string ε.
• The path starts at xinit ∈ Sh0 and ends at xgoal ∈ ShT .
• When there is a transition across a reference frame r ∈

Rh, v ← vr.
• When there is transition Rc, v ← vε = v.

Now that we have removed this ambiguity, we observe an
important relationship between a simple path and the string
that Mh generates from this path. Let v = Mh(σ) denote
the string generated from a path σ.

Property 6. A duplicate ID character in a string Mh(σ)
indicates that σ has visited a subregion at least twice.

We call strings that don’t have duplicate ID characters
non-repeating strings v∗. Non-repeating strings can only be
generated by simple paths that never leave a subregion by
crossing a reference frame and then returning by recrossing
that same reference frame. This implies the next property.

Property 7. In every simple homotopy class there exists a
path σ such that Mh(σ) has no duplicate characters.

Consider a string constructed in the following manner: begin
with the empty string ε and recursively insert a palindromic
substring wwR, where the R operator reverses the characters
in the string, into any position of a string. We denote a string
made up of recursively embedded palindromic substrings an
REP string. Note that ε and strings of the form wwR are REP
strings.

(a) Before deformation (b) After deformation

Fig. 3: Path deformation.

281

We now present the culminating lemma of this subsection.

Lemma 1. If σ is a simple path segment that begins and ends
in the same subregion and encloses no obstacle, then Mh(σ)
is a REP string.

Proof. The proof is by induction on the number of subregions
visited by a path.
• Base case: If a simple path segment σ never leaves a

subregion then Mh(σ) = ε.
• Induction step: Assume a simple path segment σ that

begins and ends in the same subregion, and Mh(σ)
is a REP string. Deform the path segment σ into a
different simple segment σ′ by crossing only one more
reference frame with ID q, as illustrated in Figure 3.
Mh(σ′) is Mh(σ) embedded with qq, where qq = qqR

is a palindromic substring. Thus, Mh(σ′) is also a REP
string.

• Conclusion: Any simple path segment σ that begins and
ends in the same subregion can be obtained by recursively
applying deformation to a simple path that never leaves
a subregion in the inductive step.

A useful consequence of this Lemma is the following.

Corollary 1. All simple paths that begin and end in the same
subregion and enclose no obstacle are homotopic to each other
and to a path σ such that Mh(σ) = ε.

B. Identifying the Equivalence

Having characterized several relationships between a path
σ and its corresponding string Mh(σ), we now want to
identify string properties that tell us when two paths are
homotopic. Although Property 3 tells us that two paths are
homotopic when they are in the same string block, we need
more. Specifically, we also need to know when two paths from
different string blocks are homotopic.

Write the set of all the simple paths as the union of several
homotopy classes Γ = Γh1

∪ Γh2
· · · ∪ Γhg

, in which Γhi
is

the set of all the paths in homotopy class hi. By Property 1
and Property 3, we know that each homotopy class is a union
of several string blocks, that is Γhi =

⋃
Γvji

. Let Vi denote
the set of strings vji associated with the homotopy class hi,
and define ΓVi =

⋃
Γvji

.
Property 8 tells us that given a homotopy class hi and its

corresponding Vi, if Mh(σ) ∈ Vi, then σ ∈ Γhi
, and vice

versa.

Property 8. ∀Γhi
,∃Vi = ∪vji ,Γhi

= ΓVi
= ∪Γvji

.

This induces a hierarchy of path partitions and their asso-
ciated string patterns, as illustrated in Figure 4.

This hierarchy tells us that we can identify the homotopy
class of a path, σ ∈ Γhi

, by finding Mh(σ) ∈ Vi.
We now show that we can use a non-repeating string v∗ to

determine whether Mh(σ1) and Mh(σ2) belong to the same

Fig. 4: A hierarchy of path partitions.

Vi. We begin with Lemma 2, which shows that every path is
homotopic to a path that generates a non-repeating string.

Lemma 2. ∀v,∃v∗,Γv ' Γv∗

Proof. Every path in a homotopy class is homotopic to the
shortest path in that same homotopy class. By Property 7, the
shortest path generates a non-repeating string v∗, which means
Γv ' Γv∗ .

The next lemma states that any two different non-repeating
string blocks are not homotopic.

Lemma 3. If v∗i 6= v∗j then Γv∗i 6' Γv∗j .

Proof. Assume that ∃v∗i 6= v∗j such that Γv∗i ' Γv∗j . Let σi ∈
Γv∗i and σj ∈ Γv∗j . Because σi and σj are homotopic to each
other, we can assume without loss of generality that σj and σi
end at the same point, σi(1) = σj(1). Again because σi ' σj ,
the continuous path formed when we connect σi to σRj (s) =
σj(1− s), a reversed version of σj , encloses no obstacle. By
Lemma 1, Mh(σi◦σRj) is a REP string. Observe that Mh(σi◦
σRj) = v∗i v

∗R
j by construction. The only way to cut a REP

string v into two non-repeating strings is that the number of
any character in the REP string v is two and the REP string v
is palindromic. Cutting the palindromic string v in the middle
gets v1 and v2, in which v1 = vR2 . But since v∗i 6= v∗j , then
v∗i v
∗R
j cannot be a REP string.

This implies that each Vi associated with each homotopy
class Γhi contains only one non-repeating string.

Theorem 1 characterizes the relationship between Vi and its
one and only non-repeating string v∗i .

Theorem 1. For all Vi there exists a unique non-repeating
string v∗i ∈ Vi, such that ∀vji ∈ Vi,Γvji ' Γv∗i .

Proof. Lemma 2 states that such a string much exist and
Lemma 3 states that this string is unique.

The next theorem gives us a construction by which we can
identify the non-repeating string representative from for each
Vi.

Theorem 2. Removing all the REP substrings of Mh(σ)
yields the v∗i for which ΓMh(σ) ' Γv∗i .

Proof. The differences between Mh(σ) and v∗i are the REP
substrings Mh(σ). The REP substrings are generated by
adding a path segment that leaves a subregion by crossing
one or more reference frames and then returning across the
same reference frames in reverse order. By Lemma 1, this

282

path segment is homotopic to a path σ ∈ Γε (empty string).
By Property 4, we have ΓMh(σ) ' Γv∗i .

This gives us a powerful tool for finding when two strings
represent homotopic or non-homotopic paths. Consider Al-
gorithm 2, which removes REP substrings using the simple
principle that if a character is on the top of the stack when
you encounter the next one, you’ve found a REP substring and
should eliminate it from the string.

Algorithm 2 REPTrim(v)
1: stack T = ∅
2: for char ∈ v do
3: if TOP(T) == char then
4: POP(T)
5: else
6: T ← char

return T

When combined with Theorem 2, this has the marvelous
effect of finding a non-repeating string called REPTrim(v)
such that Γv ' ΓREPTrim(v). This yields the following
corollary.

Corollary 2. REPTrim(Mh(σi)) = REPTrim(Mh(σj)) iff
σi ' σj .

IV. HOMOTOPY-AWARE RRT*

Corollary 2 gives us a useful way to determine whether two
paths belong to the same homotopy class, but it doesn’t tell us
anything about how to construct the path that minimizes the
cost objective within that homotopy class. This section uses
a heuristic based on the REP trim algorithm to restrict paths
generated by RRT* to a desired homotopy class. Future work
will explore improved heuristics and better variations of RRT*
using the explicit REP Trim algorithm.

RRT* explores the map to generate an optimal tree structure
based on the cost distribution on the map. While the tree
structure explores the planning space, the DFA Mh can
be used to generate the strings of the branches. The string
of each branch indicates the homotopic information of the
corresponding subpath. The resulting algorithm, Algorithm 3,
is called Homotopy-aware RRT* (HARRT*).

Algorithm 3 HARRT* (xinit, xgoal)
1: i← 0
2: Ns ← {xinit}; Es ← ∅; Ts ← (Ns, Es)
3: Ng ← {xgoal}; Eg ← ∅; Tg ← (Ng, Eg)
4: while i < N do
5: Ts, x

new
s ← EXPLORE(Ts, i)

6: Tg, x
new
g ← EXPLORE(Tg, i)

7: ps ← CONNECT(xnews , Tg)
8: pg ← CONNECT(xnewg , Ts)
9: P ← UPDATEBESTPATHBYCLASS(ps, P)

10: P ← UPDATEBESTPATHBYCLASS(pg, P)
11: i← i+ 1

12: P ← MERGEPATHS(P) return P

The algorithm uses a bi-directional structure. There is a start
tree Ts = (Ns, Es), which is an RRT* structure from the start
position for the optimal cost-to-arrive. Ns is the set of vertices
in Ts, and Es is the set of edges in Ts. Similarly, there is a
goal tree Tg = (Ng, Eg), which is an RRT* structure from
the goal position for the optimal cost-to-go.

In each iteration, a new vertex is created and added to each
tree using EXPLORE(). CONNECT() is then called to create
a path with a vertex in the other tree. In order to guarantee
optimality, a set of near vertices in Tg is provided to find the
best vertex to be connected with the new vertex xnews in Ts,
and vice versa. The created path will be compared with the
current best path that belongs to the same string block. If it is
a better one, the best path in this string block will be updated,
which is implemented in UPDATEBESTPATHBYCLASS().

Algorithm 4 EXPLORE(T, i)
1: xrand ← SAMPLE(i) ;
2: xnearest ← NEAREST(T, xrand)
3: xnew ← STEER(xnearest, xrand, η)
4: if OBSTACLEFREE(xnearest, xnew) then
5: s← STR(xnearest) ◦ CRF((xnearest, xnew))
6: if STRINGCHECK(s) then
7: xmin ← xnearest
8: Xnear ← NEAR(T, xnew, |N |)
9: for each xnear ∈ Xnear do

10: if OBSTACLEFREE(xnew, xnear) then
11: s← STR(xnear) ◦ CRF((xnear, xnew))
12: if STRINGCHECK(s) then
13: if COST(xnear) +c(

LINE(xnear, xnew)) < COST(xnew) then
14: xmin ← xnear
15: E′ ← E′ ∪ {(xmin, xnew)}
16: for each xnear ∈ Xnear \ {xmin} do
17: if OBSTACLEFREE(xnew, xnear) then
18: s← STR(xnew) ◦ CRF((xnew, xnear))
19: if STRINGCHECK(s) then
20: if COST(xnear) > COST(xnew) +

c(LINE(xnew, xnear)) then
21: xparent ← PARENT(xnear)
22: E′ ← E′ \ {(xparent, xnear)}
23: E′ ← E′ ∪ {(xnew, xnear)}

return T, xnew

Algorithm 4 gives the exploration process of a tree structure
and is similar with that used in RRT* [18]. The first difference
is that the string associated with each branch is updated
(implementing Mh on that branch) and the second difference
is the use of the STRINGCHECK() method (implementing a
heuristic version of the REP Trim algorithm) to check whether
the string of a branch satisfies the string constraint. The
methods in Algorithm 4 are defined as follows:
• CRF(l): Return the ID characters that represent the

crossed reference frames of a line segment l if any.
• STR(x): Return the string that represents the crossed

reference frames of the subpath from the root to the node

283

x sequentially. This implements Mh.
We assume that a human has specified one or more ho-

motopy classes, and therefore string blocks, as the constraint
of the planned paths. STRINGCHECK() compares whether a
string of a subpath is a substring of the strings generated by the
human. In effect, this eliminates branches that deviate from the
non-repeating string representation of the human constraint.
It is a heuristic because it does not test whether a branch
has a REP substring but rather prevents RRT* from exploring
branches that might have such substrings. Notice that the goal
tree Tg compares the strings in a reversed order.

Because RRT* maintains a tree structure, each vertex has
only one path to arrive from the root. This path, which starts
from the root to the vertex, can be converted into a string of
ID characters by Mh. The STRINGCHECK() guarantees that
a new node is added or rewired so that all the branches of
the tree structure are in the constraint of strings. For example,
suppose we have a string constraint “ab”. A branch of the start
tree Ts with string “a” satisfies the constraint, because “a”
can be extended into “ab” by concatenating a “b”. However, a
branch beginning with string “b” cannot be extended into “ab”,
and therefore does not satisfy the string constraint. It is similar
for the goal tree Tg but with reversed string order. Note that
this is an early check of the homotopy class constraint and
may eliminate some paths that would explore areas outside
of the current subregion; we will say more about this in the
results section.

Algorithm 5 CONNECT(xnew, T)
1: pmin = ∅
2: Xnear ← NEAR(T, xnew, |N |)
3: for each xnear ∈ Xnear do
4: if OBSTACLEFREE(xnew, xnear) then
5: if xnew ∈ Ts then
6: p← CONCATENATE(xnew, xnear)
7: else
8: p← CONCATENATE(xnear, xnew)
9: if STRINGCHECK(p) and c(p) < c(pmin) then

10: pmin = p
return pmin

The methods in Algorithm 5 are defined as follows:
• PATH(v, T): Return the path from the root of the tree T

to the vertex v.
• CONCATENATE(pa, pb): Return a concatenated path of pa

and pb. If pa and pb are from different directions, one of
them will be reversed for the concatenation.

When the exploration process is finished, there is a set of the
best paths of all the string blocks. By the REP Trim algorithm
we can merge the optimal paths in the string blocks that belong
to the same homotopy class. The MERGEPATHS() merges the
equivalent string blocks into homotopy classes. Thus, the set
of paths P will be updated.

V. EXPERIMENTS

Recall the following claim from the introduction: “The
contribution of this paper is an algorithm that has guaranteed

properties ... [that] create a set of path affordances that allow
a human to specify a wide range of hard and soft constraints
that the robot is guaranteed to honor when it plans its path.”
To this point in the paper, all the text has focused on either
the theoretic analysis of Palindrome Trim algorithm or the
heuristic implementation of this algorithm to help RRT*
restrict exploration to a given homotopy class. This section
provides evidence that the algorithm can support an important
need in HRI.

Consider a path-planning problem where a human super-
visor defines the task for a robot. Consider further different
ways in which the human can express hard and soft constraints
as well as performance objectives. The first two examples of
human intent translate into homotopic path constraints over an
optimization problem. Note that we use the word “quickly” to
represent the optimization criterion; in practice, many possible
criteria exist.

1) Quickly go from point A to point B through a sequence
of specific regions. Topologically, such a path is con-
strained to one homotopy class, so this homotopy class
becomes the constraint of the optimization problem and
“quickly” becomes the objective to optimize [10].

2) Quickly go from point A to point B making sure to visit
some regions and avoid other regions. Topologically,
such a path is constrained to be among the set of
homotopy classes that include the desired regions and
avoid the undesired regions. The corresponding homo-
topic constraint restricts the optimal path to the set of
homotopy classes that satisfy the requirements.

The next example of human intent allow a human to express
preference among different path shapes, but also allow the
human to trade off between following a desired path shape
and optimizing another performance objective.

3) In quickly going from point A to point B, I prefer
some types of paths over others, but I recognize that
tradeoffs may be needed. This indicates that the human
has preferences over different homotopy classes, and
also acknowledges that certain homotopy classes may
not allow an acceptable optimization of another task-
based objective. If the preference on the homotopy
classes can be modeled using an objective function, then
non-dominant solutions over the task-based objective
(e.g., “quickly”) and homotopic objective (e.g., “north
of building A”) can be found, and the human can select
one of these solutions by balancing tradeoffs.

Clearly, these examples do not cover the set of all possible
ways a human can express intent, but they do represent an
important (and we would argue a natural) subset of ways that
a human can express intent.

In the results in this section, we use the Euclidean distance
as the objective to minimize because optimality can easily be
verified. The objective can be replaced with any other type.

A. Single Homotopy Class
This subsection considers the first way of expressing intent:

Quickly go from point A to point B through a sequence of

284

specific regions. In this case, the algorithm simply seeks to
find the path that minimizes the Euclidean distance between
two points subject to the path belonging to a homotopy class.

(a) Example A (b) Example B

Fig. 5: Optimal paths with hard constraints.

Figure 5 shows results for two different worlds. In Exam-
ple A, the authors sketched the fuzzy red path, turned that path
into a single homotopy constraint, and then used the HARRT*
algorithm to find the shortest path that connected the points
subject to the constraint. The green radial lines indicate the
reference frames, the yellowish lines indicate the branches of
the forward tree of the RRT, the turqoise lines indicate the
backward tree of the RRT, and the orange line represents the
path found by the algorithm. Inspection shows that that the
path is indeed the shortest path within the homotopy class.
Further inspection shows that the algorithm concentrated its
search effort in the homotopy class, abandoning branches of
the tree either when costs became high or when the path
crossed a reference frame that deviated from the non-repeating
string pattern. Example B shows a similar result but with the
human input suppressed to help improve clarity.

Figure 5 also illustrates that the current implementation
of HARRT* is an approximation. The theoretic results show
that we can determine when any two paths are in the same
homotopy class by removing REP substrings, but where we
check for homotopic consistency in the RRT implementation
has a big impact on how big the trees grow in the algorithm. At
one extreme, future work should explore whether it is possible
(a) to check the homotopy class of the path returned by the
RRT-based exploration once a complete path from start to
finish has been found and (b) to reject paths that do not satisfy
the homotopy constraint. In the current version of HARRT*,
the STRINGCHECK() method prevents the extension of the
branches into a string that does match the non-repeating string.
This is an “early check” on the path that can reject potentially
optimal paths within a homotopy class if the optimal path
would naturally generate some REP substrings.

As illustrated by the simple examples in this section, this
“early check” avoids exploring a lot of the state space, result-
ing in search efficiency and producing acceptable paths, but it
is possible to construct examples where this early check would
prevent the discovery of the optimal path. Future work should
explore variations of the STRINGCHECK() method that allow
a budgeted amount of deviation from a path that generates a
non-repeating string. For example, the algorithm could allow
a two character palindrome to be part of the string, allowing
exploration of paths that leave a subregion to avoid an area

of high cost and then return to the subregion once they have
circumvented the high cost area. Certainly, this future work
would need to explore tradeoffs in the deviation budget, the
spacing of sample points that generate the radial structure, and
the structure of the cost function.

We conclude this subsection with an example world that ex-
poses a problem that is avoided by the bi-directional approach
we have taken but which a single direction RRT encounters.

(a) Single directional tree (b) Bidirectional tree

Fig. 6: Search results from different structures.

Figure 6 gives the results from the single directional and
bidirectional tree structures for a problem where multiple
homotopy classes are allowed. Each tree structure finds an
optimal path in each of several homotopy classes (though the
optimal path is shown for only one homotopy class) optimal
paths in several homotopy classes but only one of them is
illustrated, but the single directional tree structure could not
find an optimal path that swings by the left side of the left-most
obstacle; see Figure 6a. By contrast, the via-point constraints
in the bidirectional tree structure enforce the exploration of all
the possible homotopy classes; see Figure 6b.

Although this result is encouraging, it exposes a challenge
in combining RRT* with the Palindrome Trim algorithm or
a related heuristic. Stated simply, it is possible for RRT*
to “rewire” nodes in such a way that homotopy constraints
are violated. Using bidirectional search fixed the problem for
this world, but it is easy to construct other worlds for which
bidirectional search won’t work. Future work will address this
challenge.

B. Multiple Homotopy Classes

This section considers the second way of expressing intent:
Quickly go from point A to point B making sure to visit some
regions and avoid other regions. In this case, the set of regions
to visit and regions to avoid create a set of possible homotopy
classes.

This section gives an example of the kinds of possible
solutions that can be generated when multiple homotopy
classes are explored simultaneously. Figure 7, which will
be referenced again in the next section, shows the optimal
solutions returned by HARRT* for six different homotopy
classes. Observe that each path is optimal for the homotopy
class given that the cost function is Euclidean distance. (As
an aside, when the cost function is Euclidean distance the
heuristic implementation of the REP trim algorithm won’t
cause problems since the shortest path is also a path that
generates a non-repeating string.) For this second type of

285

human intent expression, the path with the lowest cost would
be returned.

Fig. 7: Optimal paths in six homotopy classes.

C. Soft Constraint and Tradeoffs

This section considers the third way of expressing intent:
In going from point A to point B, I prefer some types of paths
over others, but I recognize that tradeoffs may be needed.
This method is actually quite different than the two previous
methods because it treats path shape not as a hard con-
straint but rather as an objective to be optimized. Fortunately,
HARRT* can support a human trying to find tradeoffs between
preferences among homotopy classes and the costs associated
with choosing a path from a specific homotopy class.

The algorithm for finding these tradeoffs would use
HARRT* to find the optimal path from the set of all relevant
homotopy classes, as was done in the previous subsection.
Recall that HARRT* can simultaneously search in different
homotopy classes and returns the solutions in one run. The
output of the algorithm would then change its what it presents
to the human; rather than returning the best path across
homotopy classes as in the previous subsection, the algorithm
would find the minimum cost path for each homotopy class
and then output both the path and the cost of the path for each
homotopy class. This generates a tradeoff space that can be
evaluated by the human.

For example, Figure 7 shows the optimal paths in six
different homotopy classes found by HARRT*. Associated
with each class/path pair is the cost of the optimal path. If
the cost is displayed for each class/path pair, a human could
determine which shape/cost pair provides the best tradeoff.

VI. CONCLUSION AND FUTURE WORK

It is possible to create a computationally efficient algorithm
that uses strings to determine when two continuous paths are
homotopic. This algorithm can be used as a heuristic in a bi-
directional RRT* algorithm to prune paths from the search that
are not compatible with an intended homotopy class. Further-
more, the algorithm seems compatible with various degrees
of approximation, allowing for tradeoffs between computation
speed and quality of the path found by the algorithm, but future
work must confirm this.

The paper did not explore the usability, workload, or nat-
uralness of the interactions between the human and the robot
afforded by the algorithm, but the empirical results suggest

that efficient interactions are plausible given the properties of
the algorithm. Future work should explore how natural lan-
guage or a graphical user interface can be combined with the
algorithm, and whether resulting interactions are compatible
with human workload bounds and situation awareness needs.

Finally, future work should explore how the homotopy-
aware RRT* algorithm can be extended to problems with
multiple performance objectives, enabling either hard shape
constraints or tradeoffs between a set of objectives and the
shape of the resulting path.

REFERENCES

[1] D. Yi, M. Goodrich, and K. Seppi, “Informative path planning with a
human path constraint,” in Systems, Man and Cybernetics (SMC), 2014
IEEE International Conference on, Oct 2014, pp. 1752–1758.

[2] S. Bhattacharya, “Search-based path planning with homotopy class con-
straints,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[3] A. Hatcher, “Algebraic topology. 2002,” Cambridge UP, Cambridge, vol.
606, no. 9.

[4] B. Kuipers, “The spatial semantic hierarchy,” Tech. Rep. AI99-281, 29,
1999.

[5] M. J. Mataric, “Integration of representation into goal-driven behavior-
based robots,” Robotics and Automation, IEEE Transactions on, vol. 8,
no. 3, pp. 304–312, 1992.

[6] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[7] J. Fasola and M. J. Mataric, “Modeling dynamic spatial relations with
global properties for natural language-based human-robot interaction,”
in RO-MAN, 2013 IEEE. IEEE, 2013, pp. 453–460.

[8] D. C. Shah and M. E. Campbell, “A qualitative path planner for robot
navigation using human-provided maps,” The International Journal of
Robotics Research, vol. 32, no. 13, pp. 1517–1535, 2013.

[9] B. Banerjee and B. Chandrasekaran, “A framework of voronoi diagram
for planning multiple paths in free space,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 25, no. 4, pp. 457–475, 2013.

[10] J. Hershberger and J. Snoeyink, “Computing minimum length paths of
a given homotopy class,” Computational Geometry, vol. 4, no. 2, pp. 63
– 97, 1994.

[11] D. Grigoriev and A. Slissenko, “Polytime algorithm for the shortest
path in a homotopy class amidst semi-algebraic obstacles in the plane,”
in Proceedings of the 1998 International Symposium on Symbolic and
Algebraic Computation, ser. ISSAC ’98. New York, NY, USA: ACM,
1998, pp. 17–24.

[12] E. Schmitzberger, J. Bouchet, M. Dufaut, D. Wolf, and R. Husson,
“Capture of homotopy classes with probabilistic road map,” in Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on,
vol. 3, 2002, pp. 2317–2322 vol.3.

[13] E. Hernandez, M. Carreras, and P. Ridao, “A comparison of homotopic
path planning algorithms for robotic applications,” Robotics and Au-
tonomous Systems, vol. 64, no. 0, pp. 44 – 58, 2015.

[14] J. Starek, E. Schmerling, L. Janson, and M. Pavone, “Bidirectional fast
marching trees: An optimal sampling-based algorithm for bidirectional
motion planning,” in Workshop on Algorithmic Foundations of Robotics,
2014.

[15] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring ran-
dom trees,” Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep.
MIT-CSAIL-TR-2013-021, August 2013.

[16] K. D. Jenkins, “The shortest path problem in the plane with obstacles:
A graph modeling approach to producing finite search lists of homotopy
classes.” Master’s thesis, Naval Postgraduate School, Monterey, CA,
June 1991.

[17] E. Hernandez, M. Carreras, J. Antich, P. Ridao, and A. Ortiz, “A topo-
logically guided path planner for an AUV using homotopy classes,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011, pp. 2337–2343.

[18] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proceedings of Robotics: Science and
Systems, Zaragoza, Spain, June 2010.

286

