
Enhancing Long Tail Item Recommendations Using Tripartite
Graphs and Markov Process

Joseph Johnson
3361 TMCB

Computer Science Department
Brigham Young University
Provo, Utah 84602, USA

josephjohnson11@gmail.com

Yiu-Kai Ng
3361 TMCB

Computer Science Department
Brigham Young University
Provo, Utah 84602, USA

ng@compsci.byu.edu

ABSTRACT
Given that the Internet and sophisticated transportation networks
have made an increasingly huge number of products and services
available to the public, consumers are unable to identify, much less
evaluate the usefulness of, such goods accessible to them. Mod-
ern recommendation systems filter out products of lesser utility to
the customer, showcasing those items of higher preference to the
user. While current state-of-the-art recommendation systems per-
form fairly well, they generally do better at recommending the pop-
ular subset of all products available rather than matching consumers
with the vast amount of niche products in what has been termedthe
“Long Tail”. In their seminal work, “Challenging the Long Tail
Recommendation”, Yin et al. make an eloquent argument that the
long tail is where organizations can create the most value for their
consumers. They also argue that existing recommender systems op-
erate fundamentally different for long tail products than for main-
stream goods. While matrix factorization, nearest-neighbors, and
clustering work well for the “head” market, the long tail is better
represented by a graph, specifically a bipartite graph that connects
a set of users to a set of goods. In this paper, we discuss the al-
gorithms presented by Yin et al., as well as a set of similar algo-
rithms proposed by Shang et al., which traverse the bipartite graphs
through a random walker in order to identify similar users and prod-
ucts. We build on elements from each work, as well as elements
from a Markov process, to facilitate the random walker’s traversal
of tripartitle graphs into the long tail regions. This method specifi-
cally constructs paths into regions of the long tail that arefavorable
to users.

KEYWORDS
Long tail recommendation, tripartite graphs, Markov process

ACM Reference format:
Joseph Johnson and Yiu-Kai Ng. 2017. Enhancing Long Tail Item Recom-
mendations Using Tripartite Graphs and Markov Process. InProceedings of
WI’17, Germany, Aug 17,8 pages.
DOI: 10.475/1234

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WI’17, Germany
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/1234

1 INTRODUCTION
Majority of the value that recommendation systems provide comes
through effective recommendations of the long-tail. A superior rec-
ommendation system can be reduced to a superior algorithm for
long tail recommendations for two reasons: 1) long tail products
lead to higher profitability [19], and 2) long tail recommendations
are a more difficult problem to solve [14].

1.1 Profitability of Long Tail Recommendations
In his groundbreaking book, “The Long Tail: Why the Future of
Business is Selling Less of More” [2], Chris Anderson refersto
the “Long Tail” as a subset of the product space that containsniche
goods and services outside of the mainstream. Yin et al. [21]argue
that traditionally, the Pareto Rule, or the 80/20 rule, seemed to hold
in that a large amount of company revenues was generated by rel-
atively few products. However, the Internet changed that dynamic.
Now customers have access to a vast array of niche products that
brick-and-mortar companies could not afford to hold in inventory.
Yin et al. go on to state that the long tail offers higher profits for
companies than the head market for following two reasons:

• Economic principles drive the profitability of mainstream
items down due to a high number of competitors being able
to offer them. In contrast, long tail items can be sold at a
higher profit margin.

• Offering long tail products creates a “one-stop” shopping
experience [5], where customers are inclined to also pur-
chase mainstream items, and thereby generating second-
order or residual sales [21].

In support of the first point, we note that most head market prod-
ucts tend to be “vanilla” in nature in that their engineeringis tem-
pered to appeal to a wider audience. In contrast, niche products are
specifically created to satisfy certain desires. As a result, their util-
ity is higher. It follows that customers are more willing to pay high
prices for these products.

1.2 Difficulty of Long Tail Recommendations
The head market can be represented as a dense matrix that lends
itself well to collaborative filtering [4], matrix factorizations [9],
nearest-neighbors [17], clustering [7], and traditional machine learn-
ing algorithms [20]. Matrices representing the long tail, on the other
hand, are sparse. For example, Yin et al. [21] make the case that
association rules, collaborative filtering, and matrix factorizations
lead to local and obvious recommendations. In other words, these

methods lead to products that a given user would already be familiar
with.

We first describe two novel methods proposed by Yin et al. [21]
and Shang et al. [18] that enhance long tail recommendations. The
former method modifies the probability variables of the hitting time
algorithm to increase the likelihood that a random walker reaches
the long tail regions of a bipartite graph, whereas the latter is a
collaborative filtering method that employs a tripartite graph and
random walkers to find users with similar tastes as a useru [1].
Our proposed method combines elements of these methods, as well
as elements from the familiar PageRank algorithm, to increase the
likelihood thatu is recommended items (i) whose characteristics are
appealing tou, and (ii) are found in the long tail region. Specifically,
we reduce the Long Tail Recommendation problem to traversing
a tripartite graph through a Markov process. In other words,we
represent the tripartite graph as a stochastic matrix and after t (≥ 1)
iterations make recommendations tou based on the probability of
arriving at each of the items available.

2 RELATED WORK
Recommendation systems have typically been divided into two cate-
gories:content-basedfiltering andcollaborative-basedfiltering. As
mentioned, collaborative-based filtering provides recommendations
based on the users most similar to a useru or the products most sim-
ilar to the productsP rated byu [6, 12]. We mentioned earlier that
the weakness of this process is that it tends to provide local, trivial
recommendations. Content-based filtering refers to predicting a rat-
ing byu for a productp based on a feature vector of descriptions of
products previously rated byu [16]. Unfortunately, most products
lack elaborate descriptions, which makes for poor predictions [21].
In addition, products that do not have similar features to those rated
by u are not recommended. In other words, this method provides
no novel recommendations. The usage longevity of collaborative-
based filtering and content-based filtering is that they tendto do
well in the head market. However, as mentioned before, the real
value to users comes from long tail recommendations, i.e., the in-
troduction of products they would likely never discover through a
non-algorithmic search.

Two major works propose algorithms for recommendations
based onk-partite graphs. As previously mentioned, the usage of
graph prevents the necessity of imputing values or needing asig-
nificant number of like users before effectively recommending. We
show a detailed representation of each.

2.1 Hitting Time and Absorbing Cost
Yin et al. [21] represent a set of usersU and a set of itemsM
in a bipartite graph, which has a corresponding adjacency matrix.
(Figure 1 shows a representation of how such a matrix is translated
into a bipartite graph.)

In the hitting time algorithm in [21], the weights on the edges are
given as

pi, j = P(s(t + 1) = j | s(t) = i)

=

a(i, j)

di
(1)

Figure 1: Bipartite representation of user-item dataset

wheredi =
∑n
j=1 a(i, j). The hitting time, or the number of steps it

would take a userq to reach a productj while traversing this graph,
is given by

H (q |j) =

1

pj,q

=

πj

pq, jπq
(2)

where

πi =

∑n
j=1 a(i, j)∑n
i, j=1 a(i, j)

(3)

The metricH (q |j) has the unusual quality that a low hitting time
meansq andj are relevant and few users have rated itemj. In other
words,j is a product that is similar to thoseq has rated high andj is
in the long tail. This ingenious approach mapsq to items that are in
the long tail and potentially appealing toq.

While this method takes into account only the relationship be-
tween users and ratings, Yin et al. merely use this method as a
base case and enhance the method with other features. The primary
algorithms proposed by Yin et al. are the Absorbing Cost (AC)al-
gorithms of the form

AC(S |i) =

{
0 i ∈ S∑
j pi jc(j |i) +

∑
i pi jAC(S |j) i < S

(4)

wherepi j is theprobabilityof following a path fromi to j, andc(j |i)
is the transition costfrom a statei to its adjacent statej. While
the hitting time algorithm just employed the ratings that users gave
to items, the Absorbing Cost (AC) algorithm entails other features.
For example, a user’s distributionθ of item categories is used to
define the costc(j |i). Hence, the proposed methods tap into data
beyond simple user-movie ratings.

2.2 Tripartite Approach
Shang et al. [18] take a similar approach in that they also usea
k-partite graph; however, there are three key differences between
their method and Yin et al.’s approach.

(i) They employ a tripartite graph by additively combining the
results of a user-item bipartite graph and a user-tag bipar-
tite graph.

(ii) Ratings are not considered, rather a binary representation
of (0, 1) corresponding to (connected, not connected) is
employed.

(iii) The algorithm maps a user to a subset of users who are
similar to a tag instead of mapping a user to items as in the
hitting time algorithm.

Specifically, Shang et al.’s method goes as follows: for a user
u and an objectα thatu has collected, setauα = 1, andauα = 0,
otherwise. In the case of a tags, a′us = 1 if u has tagged an object
with s, anda′us = 0, otherwise. Given a target userv, Shang et
al. first distribute the resource (or rating power, usually set to 1
initially) of v to

rαv =
avα

k(v)
(5)

wherek(v) is thedegreeof v in the user-item bipartite graph. Here-
after, the similarity betweenu and each userv with v being the
target user is calculated as

suv =

∑
α ∈O

auα × rαv

k(α)

=

1

k(v)

∑
α ∈O

auα × avα

k(α)
(6)

wherek(α) is thedegree of itemα in the user-item bipartite graph,
andO is the set of items.

The similarity measure between the tags ofu and the tags ofv is
computed as

s ′uv =
1

k ′(v)

∑
t ∈T

a′ut × a′vt
k ′(t)

(7)

wherek ′(t) (k ′(v), respectively) is thedegreeof tag t (userv, re-
spectively) in the user-tag bipartite graph, andT is the set of tags.
The two similarity measures are combined in additive fashion as
follows:

s∗uv = λsuv + (1 − λ)s
′

uv (8)

whereλ is a tuning parameter. Once eachs∗ has been calculated for
each(v,u) pair, the preference ofv onα is computed as

pvα =
∑
u,v

s∗uvauα (9)

Figure 2: Directed graph of a simple system

All of the items thatv has not rated are sorted and the top-n

items are recommended tov. As was shown, this system is a direct
collaborative filteringsystem, while the hitting time algorithm em-
ploys arandom walkerto connect a userv to items by traversing
user nodes.

3 GRAPH TRAVERSAL THROUGH A
MARKOV PROCESS

Before proposing our solution, we offer a brief explanation(through
an example) of how aMarkov processdescribes theprobabilitiesof
a random walker arriving at a nodej from a nodei, which we term
pi, j , given an increasing time horizont .

EXAMPLE 1. Let {A,B,C,D} be a set of nodes, its adjacency
lists and the corresponding graph are as shown in Figure 2.

The system could be represented as a stochastic transition matrix
L as follows:

L =

©«

0.0 0.0 0.33 0.0

0.0 0.0 0.33 0.5

1.0 0.5 0.00 0.5

0.0 0.5 0.33 0.0

ª®®®
¬

Hence, the initial probability of arriving atD fromC is given by
a3,4 or 1

3 . Note that the columns ofL sum to 1, i.e.,
∑
j pi, j = 1, for

all time t . We can find the probability ofpi, j for any t by simply
calculatinglj,i ∈ At . Let’s analyze the process of arriving atA from
D. At time t = 1, we have

L1 =

©
«

0.0 0.0 0.33 0.0

0.0 0.0 0.33 0.5

1.0 0.5 0.00 0.5

0.0 0.5 0.33 0.0

ª®®®
¬

which is theinitial representation and shows no path fromD to A,
whereas att = 2, we have

L2 =

©
«

0.33 0.16 0.00 0.16

0.33 0.42 0.16 0.16

0.00 0.25 0.66 0.25

0.33 0.16 0.16 0.42

ª®®®
¬

Hence, there is a16 chance of arriving atA fromD att = 2. There
are five possible 2-step trips that we could have taken fromD, i.e.,

{{B,C}, {B,D}, {C,A}, {C,B}, {C,D}}

Of these, only one lands us inA. Note that our chance of arriving
atC from D increases with respect to our chance of arriving at any
other node ast increases. That is becauseC has thehighestdegree
of the set of nodes in the graph.

As t increases, the elements ofL converge to probabilities that do
not change with subsequent iterations of theMarkov process. This
state is known as thestationary distribution. For this example, the
stationary distribution is

L38 =

©
«

0.125 0.125 0.125 0.125

0.250 0.250 0.250 0.250

0.375 0.375 0.375 0.375

0.250 0.250 0.250 0.250

ª®®®
¬

Therefore, forn > 38 the probabilities ofLn no longer change.
Observe that for all nodes inl ∈ L, the most likely destination when
leavingl isC, since the stationary distribution favors nodes with the
highestdegree, which should be kept in mind when we discuss our
proposed solution.✷

4 PROPOSED SOLUTION
The above-mentioned algorithms, as well as the Markov process,
hold the critical elements in solving the Long Tail recommendation
problem. The elements are specifically

(1) A third set of nodes that characterizes the set of usersU

and/or the set of itemsI to enhance the process.

(2) A Markov process allows us to simulate the hitting time
algorithm by showing the probability of a random walker
leaving a user nodei and arriving at an item nodej.

(3) We would like the process to favor items that pertain to
genresfavorable to a user, havefew ratings, and have a
highaverage rating.

We seek to combine these elements in our proposed solution, i.e.,
our method, as follows:

(1) Adds a set of nodesC that represents additional informa-
tion relatingI to U . This set of nodes creates additional
paths from a useru to a preferred itemi. We will show that
if the information contained in the nodes ofC adequately
describe a relationship betweenI andU , the resulting tri-
partite graph will contain shorter paths betweenu and i
than were available in the bipartite graph. In other words,
there will be “express lanes” that more expeditiously con-
nectu andi.

(2) Employs a Markov chain to simulate the hitting time al-
gorithm. This allows us to quantify the probability ofu
arriving at each of the itemsi ∈ I .

Critical to our solution, however, is the balance of a trade-off be-
tween the implementations of ourtripartite graphand theMarkov
chain. Specifically, while the tripartite graph adds a significant
number ofshorter pathsbetweenu and a preferred itemi and the
Markov process allows us to calculate the probabilities ofu arriv-
ing at items that (s)he has not yet rated, as the timet for the Markov

chain increases, the process will favor items with more links. In
other words, ast increases so does the probability of arriving at an
item with many ratings—a short-tail item. We give specific details
of the implementation of the tripartite graph and Markov chain be-
low and describe in more detail the benefit they provide our solution
and the details of their implementations.

4.1 The Tripartite Graph
Representing our recommendation system as a tripartite graph has
significant advantages over a simple bipartite graph. Consider the
user-item bipartite graph as shown in Figure 3(a). The bipartite
structure is such that userAwould only be recommended items 1, 2,
and 3 through a random walker. Since the long tail item 4 is discon-
nected from the user network ofA,A will not be recommended this
item. However, suppose we add another dimension to our dataset,
such as genre. Let the set of genres be{S,T} and the items belong
to the following sets,S = {1, 4} andT = {2, 3}. We now represent
the dataset as a tripartite graph as shown in Figure 3(b). Now, A
has a path to long tail items through the categoryS. By including
extra dimensions to the graph, we allow users to access more items
in the long tail that are to their liking, e.g., the relatively few links at
item 4 would give the random walker a higher probability of being
at item 4.

4.2 Connecting the Tripartite Graph
As mentioned earlier, the bipartite graph connects a set of user
nodesU and item nodesI through a set of edgesE, where an edge
(i, j) ∈ E connects a useri to an itemj. The weight of the edgew is
therating thati assigned toj.

We introduce a third set of nodesC. The elements in the set
are featuresthat describeU or I .1 Note that this approach differs
significantly from that of Shang et al. [18], since the latterconnect
U to I andU toC separately and then additively combine the hitting
times from each userui to another useruj . Hence, their approach
would represent the system shown in Figure 3(b) as in Figure 3(c)
instead. Hence, a random walker would never be directly connected
from I to C. The resultant connections fromU to C andU to I

essentially combine the results of two bipartite graphs, but does not
directly joinC into the bipartite graph, whereas our method allows
for traversal between all setsI ,U , andC, even though it comes at a
cost.

4.3 Limitations of Tripartite Graphs
By employing the tripartite graph as shown in Figure 3(b), welose
the hitting time property of non-symmetry betweenai, j andaj,i .
In short, this is the strength behind the hitting time algorithm and
absorbing cost algorithms proposed by Yin et al. [21]. Theiral-
gorithms perform well because the number of steps taken froman
item j to a useru better describes the uniqueness of the item than
calculating the number of steps to reachj from u. Since we lose
this property of non-symmetry, we are not able to have the Markov
process mature to astationary distribution. However, the process
becomes valuable in its earlier stages (i.e.,t < 7), since it allows us

1These features could contain demographic informationC such as age, gender, or oc-
cupation. They could also describe the items, such as genre being a description we
used earlier.

Figure 3: (a) A simple user-item bipartite graph, (b) a tripartite graph with new path created from A to 4, and (c) the Tripartite
approach presented by [18]

to see how a random walker would traverse the graph given a short
time horizon. We will argue that the short time horizon is a better
representation of reality than the stationary distribution.

4.4 Traversing the Bipartite Graph Through a
Markov Process

Initially, a tripartite graph as applied to the Long Tail Problem only
shows connections between a useru and the items (s)he has rated
and betweenu and the genre of items rated byu. Clearly, this is not
useful in predicting ratings for items not yet rated byu. The Markov
process, however, allows us to see the probabilities of arriving at dif-
ferent item nodes for each increasing value oft as demonstrated in
Example 1. With respect to Example 1, the graph initially provides
probabilities for

8

|nodes |2
=

8

16

= 50%

of the possible paths. However, fort = 2, we have the probabilities
for 14

16 = 87.5% of the possible paths. Byt = 4, we have a probabil-
ity for all possible paths. With respect to the MovieLens dataset2

that we have analyzed, there are initially 1,000,209 ratings, which
represents

1, 000, 209

|users | × |movies |
=

1, 000, 209

6, 040 × 3, 607

= 4.59%

of the total possible ratings. However, observe the following values
for t :

2http://www.grouplens.org

t = 2 :
13, 515, 389

6, 040 × 3, 607
= 62%

t = 3 :
22, 384, 240

6, 040 × 3, 706
= 100%

Hence, each of the usersu ∈ U has a 100% probability of arriving
at all the itemsi ∈ I aftert = 2.

4.5 Connectedness-Descriptiveness Trade-Off
So far we have described two fundamental elements to our proposed
recommendation system. First, an additional set of nodesC that
greatly enhancesdescriptiverepresentation of the relationship be-
tweenU andI and thus a potentially greater infrastructure for build-
ing short paths betweenU and the long tail items inI . Second, the
Markov chainthat allows us to generate probabilities for arriving at
unrateditems based on our new tripartite structure.

Assume that we can quantify thedescriptivenessof the tripartite
graph based on how the nodes are currently connected. In other
words, we assign the degree to which the graph actually represents
the tastes of the users inU with a value denotedD. Initially, D

is high as it shows connections between the users and items they
actually rated. This arbitrary valueD can be greatly enhanced by
adding the nodes inC in that we now know how users prefer differ-
ent genres and how those genres related to the items inI . Now, let
us quantify theconnectednessof graph as an arbitrary valueT . This
value has a more concrete representation as it can be associated with
the degree to which the Markov process has progressed towards a
stationary distribution. Initially, this value is low. Figure 4 shows
the abstract representation of howD andT relate ast increases.

The critical relationship is that as the Markov chain progresses to-
wards a stationary distribution, theconnectivityobviously increases.
However, thedescriptivenessis eroded in that the degree to which
the process has progressed towards a stationary distribution is the
degree to which the process merely favors nodes with a high degree,

Figure 4: Abstract depiction of Connectivity-Descriptiveness
trade-off as a function of t

or short head items. At that point, the paths no longer represent the
potential infinite variations that we see in user tastes. They sim-
ply assign to a useru the itemsi that are most popular. We argue
that the stationary distribution is not representative of auser’s pref-
erence. As shown in Figure 4, the descriptiveness of the graph is
reducedto returning for each noden,

degree ofn

|nodes inL |2
. (10)

For this reason, we employ the Markov process for small values
of t in order to increase theconnectivity, but end the process once
the descriptivepower of the graph significantly decreases, which
lies theConnectedness-Descriptivenesstrade-off.

5 IMPLEMENTATION DETAILS
Up till now, we have merely described principle foundation of our
recommendation process. We now describe the details of the imple-
mentation.

5.1 Edge Weights
With respect to the edges connectingU andI , for a useru and item
i theedge weightw is computed as follows:

wu,i =
ratinд(u, i)∑
j∈I ratinд(u, j)

(11)

whereratinд(u, i) refers to the rating given to itemi by useru.
Creating the set of edges betweenU andC and the set of edges

betweenI andC, however, is not as straight forward. That is be-
cause the nodes ofC generally have direct connection with either
U or I , but not both. As we often deal mainly with the genre of
an item as our setC in our experiments, we describe the approach
to creating edge weights fromC toU andC to I by illustrating the
process of adding genres to our bipartite graph. Given that genres
describe items, we would connect a genrec ∈ C to an itemi ∈ I

if i corresponded toc and set as itsweightthe average rating given
to i. While we could simply set a binary weight representing ei-
ther membership or no membership, theaverage ratingfacilitates
random walkers to gravitate towards the better rated movies.

For the connecting weights betweenC andU , a genrec is con-
nected to a useru if u has rated at least one item that corresponds

to c. Theweightof the connection is the average rating thatu gave
to the set of items (s)he rated that correspond toc. Hereafter, we
create the edge weight connectingu to c as follows:

wu,c =
avд ratinд(u,c)∑
j∈C avд ratinд(u, j)

(12)

whereavд ratinд(u,c) is the average rating thatu gave to items of
featurec.

The edge weight connecting a featurec to an itemi is defined
below.

wc,i =
avд ratinд(i)∑
j∈C avд ratinд(j)

(13)

whereavд ratinд(i) is the average rating given toi from all users.
Hence, when a random walker arrives at a featurec from a useru,
the walker will have a greater probability of arriving at an item i

that has been rated highly.
We note that the relationship of nodes fromC to I , as defined in

Section 6, is one to many, while the relationship betweenC toU is
many to many. The former is important because items can be from
several different genres. For example, a movie may be a roman-
tic comedy. However, for the purposes in conducting our empirical
study, we considered a romantic comedy to be a separate genrethan
a comedy or a romance. Whether this is the most effective method
would be a rich area of future experimentation. Indeed, the method-
ology behind adding a third, or perhaps fourth or more, element to
the bipartite graph should prove to be fruitful. However, itis likely
that the complexity of the procedure is what has discouragedmore
use ofk-partite graphs, wherek > 2.

5.2 Adjacency Matrix
The tripartite graph is translated to anadjacency matrixas would
be the case for representing any graph as a matrix. For example,
the graph shown in Figure 3(b) could easily be translated to an ad-
jacency matrix where we to have the ratings for{A,B,C,D, E}.

6 EXPERIMENTAL RESULTS
We used the MovieLens dataset3 for conducting the performance
evaluation of our proposed Long-Tail recommendation system and
compare our method against those proposed by Yin et al. [21] on
two metrics:Recall@N [10] andDiversity [3], which are formally
defined below. These methods were used in [21]. We compared our
experimental results to those in [21] using the MovieLens dataset
and treated as our baseline thehitting time algorithmproposed in
[21]. First of all, we divided the MovieLens dataset into a training
setM and a testing setT . For each movie itemi given 5 stars by a
useru, we randomly selected 1,000 items not rated byu and com-
pute the scores fori, as well as the 1,000 items. We then formed a
ranked listr of these 1,001 rated items. Based on this list,hit@N

= 1 if i ∈ r , and 0 otherwise.

Recall@N =

∑
hit@N

|L |
(14)

3The MovieLens database is a large movie ratings database composed of approxi-
mately 11 million ratings of around 8,500 movies.

Figure 5: Recall@N for t = {3, 5, 7}

where|L | is the size of the test set, and

Diversity =
| ∪u ∈U Ru |

|I |
(15)

whereU is the set of users,I is the set of items, andRu is the set of
recommendations for useru ∈ U .

We randomly selected 200 users and formed a set from the top-10
items recommended to these users. A highdiversityscore translates
into more long-tail items being recommended [8]. The intuition
is that if a method recommends relatively few items, these items
tend to be popular short head items [15]. By contrast, thegreater
the number of unique items recommended to the set of users, the
greaterthe probability that long tail items are found among such a
set.

We ran our proposed solution for values oft = {3, 5, 7} and com-
pared them to the two absorbing time algorithms (AC1 and AC2)
and thehitting time(HT) algorithm proposed by Yin et al [21].

6.1 Performance Evaluation
We first measuredRecall@N for our proposed recommendation sys-
tem based on T3, T5, and T7 referring to the Markov process where
t = 3, 5, and 7, which is depicted in Figure 5. The results, as shown
in Figure 5, illustrates that our recommendation algorithmworks
best for the lower values oft . As mentioned previously, as the pro-
cess progresses towards the stationary probability, the descriptive-
ness of the graph is lost. Hence, fort = 7, the ability of the model
to recommend long tail items breaks down. Figure 6, which shows
the comparisons between our results and those archived by [21], in-
dicates that our proposed recommendation system at botht = 3 and
t = 5 edges out the absorbing cost methods for PositionN ≤ 0.40.

In comparing the performance of our recommender with the one
achieved by [21] in terms of thediversitymetric, Table 1 shows that
thehitting time[13] andabsorbing cost[11] algorithms recommend
a wider diversity of items by a significant margin. However, we
purport that the proposed solution recommends primarilyhigher
rated items given that the paths that reachI fromU passing through
C arrives at nodes representing items inI that have a higher rating.
For this reason, our approach favorshigherrated items.

Figure 6: Results of our proposed method compared to the two
absorbing cost methods and a hitting time method adopted by
[21]

6.2 Performance Evaluation Summary
We purport that the proposed algorithm performs very well com-
pared to the excellent methods proposed in [21] due to the fact that
the added set of feature nodesC provide anexpress lanefrom a
useru to the set of itemsI that are highly rated. The critical com-
ponent to guiding a user to items that are specific to the user is that
the number of nodes inC is 301, which represents the combination
of genres that describes a movie, rather than the 18 atomic genres.
This puts the random walker into a more specific category where
it has a higher chance of reaching quality long-tail items through
other users connected to those items. As depicted in Figure 7(a),
a random walker arrives at a genre of one of the movies favored
by u. After the walker arrives at the items rated highly that are
from the featurec, the random walker can then connect back with
users who have similar tastes (see Figure 7(b)). Furthermore, From
these users, the random walker can arrive at items within thesame
space ofI and thereby find potential highly rated long-tail items
(see Figure 7(c)). Hence, the proposed algorithm targets items in
specific regions of the graph rather than a “shotgun” approach of
recommending a greater number of unique items across all users.

7 CONCLUSION
The seminal works of Yin et al. [21] and Seng et al. [18] have
laid the foundation for representing the user-item interaction as a
bipartite graph and appropriately traversing it in order toprovide
recommendations. We adopt elements from these methods to create
a solution that employs atripartite graph and aMarkov process.
This allows us to extract the most value from each of these tools
in order to direct random walkers to regions of the graph thatare
specific to the users’ tastes and thereby increase the chancethat the
random walker reaches a quality long-tail item.

To the best of our knowledge, our proposed long-tail recommen-
dation system is the only system that consider using the tripartite

Table 1: Diversity scores

Algorithm Diversity Score Algorithm Diversity Score Algorithm Diversity Score

t = 3 0.27 AC1 0.425 HT 0.41
t = 5 0.15 AC2 0.42

Figure 7: (a) The sets of nodesU ,C, and I , where a random walker arrives at a set of nodes that represent movie genres rated high by
a useru, (b) Connecting back to users with similar preferences for items that pertain to featurec, and (c) Random walker directed to
highly rated items that fall under c

graph and a Markov process to suggest long-tail items to users. The
performance evaluation as presented in the Experimental Results
section verifies theuniquenessandnoveltyof our recommendation
approach, which further enhances existing algorithms in making
long-tail item recommendations.

REFERENCES
[1] G. Adomavicius and A. Tuzhilin,Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions, IEEE TKDE,
Vol. 17, No. 6, pp. 734-749, June 2005.

[2] C. Anderson. The Long Tail: Why the Future of Business is Selling Less of More,
Hachette Books, 2008.

[3] C. Clarke, M. Kolla, G. Cormack, O. Vechtomova, A. Ashkan, S. Buttcher, and I.
MacKinnon, “Novelty and Diversity in Information Retrieval Evaluation”, ACM
SIGIR, pp. 659-666, 2008.

[4] M. Ekstrand, J. Riedl, and J. Konstan,Collaborative Filtering Recommender Sys-
tems, Foundations and Trends in Human Computer Interaction, Vol. 4, No. 2, pp.
81-173, 2011.

[5] S. Goel, A. Broder, E. Gabrilovich, and B. Pang. “Anatomyof the Long Tail:
Ordinary People with Extraordinary Tastes”, ACM WSDM, pp. 201-210, 2010.

[6] J. Herlocker, J. Konstan, and J. Riedl.An Empirical Analysis of Design Choices in
Neighborhood-based Collaborative Filtering Algorithms, Information Retrieval,
5:287-310, October 2002.

[7] K. Kima and H. Ahn,A Recommender System Using GA K-means Clustering in
an Online Shopping Market, Expert Systems with Applications, Vol. 34, No. 2, pp.
1200-1209, February 2008.

[8] S. Kingrani, M. Levene, and D. Zhang, “Diversity Analysis of Web Search Re-
sults”, Article No. 43, ACM WebSci, 2015.

[9] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for Recom-
mender Systems”, IEEE Computer, pp. 42-49, August 2009.

[10] C. Manning, P. Raghavan, and H. Schütze. Introductionto Information Retrieval,
Cambridge, 2008.

[11] C. Mavroforakis, M. Mathioudakis, and A. Gionis, “Absorbing Random-Walk
Centrality: Theory and Algorithms”, IEEE ICDM, pp. 901-906, 2015.

[12] M. McLaughlin and J. Herlocker, “A Collaborative Filtering Algorithm and Eval-
uation Metric that Accurately Model the User Experience,” ACM SIGIR, pp. 329-
336, 2004.

[13] Q. Mei, D. Zhou, and K. Church, “Query Suggestion Using Hitting Time”, ACM
CIKM, pp. 469-478, 2008.

[14] Y. Park and A. Tuzhilin, “The Long Tail of Recommender Systems and How to
Leverage It”, ACM RecSys, pp. 11-18, 2008.

[15] R. Reinanda, E. Meij, and M. de Rijke, “Document Filtering for Long-tail Enti-
ties”, ACM CIKM, pp. 771-780, 2016.

[16] F. Ricci, L. Rokach, B. Shapira, and P. Kantor. Recommender Systems Hand-
book, Springer, New York, 2011.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based Collaborative Fil-
tering Recommendation Algorithms”, WWW, pp. 285-295, 2001.

[18] M. Shang, Z. Zhang, T. Zhou, and Y. Zhang, “Collaborative Filtering with
Diffusion-based Similarity on Tripartite Graphs”, Physica A: Statistical Mechan-
ics & Its Applications, Vol. 389, No. 6, pp. 1259-1264, 2010.

[19] D. Shen, X. Wu, and A. Bolivar, “Rare Item Detection in E-Commerce Site”,
WWW, pp. 1099-1100, 2009.

[20] G. Webb, M. Pazzani, and D. Billsus,Machine Learning for User Modeling, User
Modeling and User-Adapted Interaction, Vol. 11, No. 1, pp. 19-29, March 2001.

[21] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen, “Challenging the Long Tail Recom-
mendation”, VLDB Endowment, Vol. 5, No. 9, pp. 896-907, 2012.

	Abstract
	1 Introduction
	1.1 Profitability of Long Tail Recommendations
	1.2 Difficulty of Long Tail Recommendations

	2 Related Work
	2.1 Hitting Time and Absorbing Cost
	2.2 Tripartite Approach

	3 Graph Traversal Through a Markov Process
	4 Proposed Solution
	4.1 The Tripartite Graph
	4.2 Connecting the Tripartite Graph
	4.3 Limitations of Tripartite Graphs
	4.4 Traversing the Bipartite Graph Through a Markov Process
	4.5 Connectedness-Descriptiveness Trade-Off

	5 Implementation Details
	5.1 Edge Weights
	5.2 Adjacency Matrix

	6 Experimental Results
	6.1 Performance Evaluation
	6.2 Performance Evaluation Summary

	7 Conclusion
	References

