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ABSTRACT

Given that the Internet and sophisticated transportatemaorks
have made an increasingly huge number of products and ssrvic
available to the public, consumers are unable to identifychmless
evaluate the usefulness of, such goods accessible to theod- M
ern recommendation systems filter out products of lesskiyut
the customer, showcasing those items of higher preferentieet
user. While current state-of-the-art recommendationesystper-
form fairly well, they generally do better at recommendihg pop-
ular subset of all products available rather than matchamgemers
with the vast amount of niche products in what has been tetheed
“Long Tail”. In their seminal work, “Challenging the Long iTa
Recommendation”, Yin et al. make an eloquent argument Heat t
long tail is where organizations can create the most valuéhtsr
consumers. They also argue that existing recommendemsyste-
erate fundamentally different for long tail products than rain-
stream goods. While matrix factorization, nearest-nedghband
clustering work well for the “head” market, the long tail istter
represented by a graph, specifically a bipartite graph thanects

a set of users to a set of goods. In this paper, we discuss the al

gorithms presented by Yin et al., as well as a set of similgo-al
rithms proposed by Shang et al., which traverse the bipagtaphs
through a random walker in order to identify similar userd prod-
ucts. We build on elements from each work, as well as elements
from a Markov process, to facilitate the random walker'sé¢raal

of tripartitle graphs into the long tail regions. This meadhepecifi-
cally constructs paths into regions of the long tail thatfaverable

to users.
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1 INTRODUCTION

Majority of the value that recommendation systems proviot@es
through effective recommendations of the long-tail. A sigreec-
ommendation system can be reduced to a superior algorithm fo
long tail recommendations for two reasons: 1) long tail piatd
lead to higher profitability [19], and 2) long tail recommaeatidns

are a more difficult problem to solve [14].

1.1 Profitability of Long Tail Recommendations

In his groundbreaking book, “The Long Tail: Why the Future of
Business is Selling Less of More” [2], Chris Anderson refars
the “Long Tail” as a subset of the product space that contaise
goods and services outside of the mainstream. Yin et al.d&jfi]e
that traditionally, the Pareto Rule, or the 80/20 rule, seeto hold

in that a large amount of company revenues was generated-by re
atively few products. However, the Internet changed thatedyic.
Now customers have access to a vast array of niche produwts th
brick-and-mortar companies could not afford to hold in imeey.
Yin et al. go on to state that the long tail offers higher psofiir
companies than the head market for following two reasons:

e Economic principles drive the profitability of mainstream
items down due to a high number of competitors being able
to offer them. In contrast, long tail items can be sold at a
higher profit margin.

Offering long tail products creates a “one-stop” shopping
experience [5], where customers are inclined to also pur-
chase mainstream items, and thereby generating second-
order or residual sales [21].

In support of the first point, we note that most head marked-pro
ucts tend to be “vanilla” in nature in that their engineeriadem-
pered to appeal to a wider audience. In contrast, niche ptsdue
specifically created to satisfy certain desires. As a rethair util-
ity is higher. It follows that customers are more willing tayphigh
prices for these products.

1.2 Difficulty of Long Tail Recommendations

The head market can be represented as a dense matrix that lend
itself well to collaborative filtering [4], matrix factor&ions [9],
nearest-neighbors [17], clustering [7], and traditionakthine learn-

ing algorithms [20]. Matrices representing the long tail tloe other
hand, are sparse. For example, Yin et al. [21] make the case th
association rules, collaborative filtering, and matrixtésizations

lead to local and obvious recommendations. In other woldset



methods lead to products that a given user would alreadynbiéidia
with.

We first describe two novel methods proposed by Yin et al. [21]
and Shang et al. [18] that enhance long tail recommendatitimes ‘
former method modifies the probability variables of theihiftime iH.ﬁHd..m. (1986)
algorithm to increase the likelihood that a random walkecches
the long tail regions of a bipartite graph, whereas the dage
collaborative filtering method that employs a tripartiteygn and ‘
random walkers to find users with similar tastes as a usff. | BenHur (1959)
Our proposed method combines elements of these methodsllas w
as elements from the familiar PageRank algorithm, to irszrdhe
likelihood thatu is recommended items (i) whose characteristicsare |
appealing ta:, and (ii) are found in the long tail region. Specifically, | (1999
we reduce the Long Tail Recommendation problem to traversin |
a tripartite graph through a Markov process. In other wowds, | . i
represent the tripartite graph as a stochastic matrix aedif> 1) (AIBE, rvn S e R

iterations make recommendationsittased on the probability of
arriving at each of the items available. Figure 1: Bipartite representation of user-item dataset

i First Blood (1982)
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2 RELATED WORK

Recommendation systems have typically been divided inbacate- whered; = X7, a(i, j). The hitting time, or the number of steps it

gories:content-basedltering andcollaborative-basefiltering. As would take a useq to reach a produgtwhile traversing this graph,
mentioned, collaborative-based filtering provides recemdations is given by

based on the users most similar to a user the products most sim-

ilar to the products rated byu [6, 12]. We mentioned earlier that Hqli) 1

the weakness of this process is that it tends to provide,|tdhl v Pi.q

recommendations. Content-based filtering refers to priedia rat- Tj

ing by u for a producip based on a feature vector of descriptions of - M O]

products previously rated by [16]. Unfortunately, most products

lack elaborate descriptions, which makes for poor preshsti21]. where

In addition, products that do not have similar features ts¢hrated

by u are not recommended. In other words, this method provides yn .

no novel recommendations. The usage longevity of colldivera T = Jj=1 ai )

based filtering and content-based filtering is that they tendo 21 oy alinj)

well in the head market. However, as mentioned before, thk re ) ) o

value to users comes from long tail recommendations, he.jrt- The metricH(qlj) has the unusual quality that a |0\_N hitting time

troduction of products they would likely never discoveraigh a means; and; are relevant and few users have rated ifeim other

non-algorithmic search. words,j is a product that is similar to thogehas rated high angis
Two major works propose algorithms for recommendations in the long tail. This ingenious approach maye items that are in

based ork-partite graphs. As previously mentioned, the usage of the long tail and potentially appealing §o

®)

graph prevents the necessity of imputing values or needisig-a While this method_ takes _into account only the rt_alationship b
nificant number of like users before effectively recommagdiwe tween users and ratings, Yin et al. merely use this method as a
show a detailed representation of each. base case and enhance the method with other features. Tieeryri

algorithms proposed by Yin et al. are the Absorbing Cost (AE)

2.1 Hitting Time and Absorbing Cost gorithms of the form

Yin et al. [21] represent a set of usdsand a set of itema/
in a bipartite graph, which has a corresponding adjacendybma AC(S|i) = {
(Figure 1 shows a representation of how such a matrix is latets
into a bipartite graph.)
In the hitting time algorithm in [21], the weights on the edgee wherep;; is theprobability of following a path fromi to j, andc(jli)

given as is the transition costfrom a statei to its adjacent statg While

the hitting time algorithm just employed the ratings thatrsggave

to items, the Absorbing Cost (AC) algorithm entails otheatfees.
P(s(t+1)=j|s(t)=1) For example, a user’s distributiahof item categories is used to
a(i, j) define the cost(j|i). Hence, the proposed methods tap into data
= 4 1) beyond simple user-movie ratings.

0 ies 4)
2 pije(l) + X pijAC(S|j) i¢S

pi,j



2.2 Tripartite Approach

Shang et al. [18] take a similar approach in that they alsoause
k-partite graph; however, there are three key differencéwdsn
their method and Yin et al.’s approach.

(i) They employ a tripartite graph by additively combinirgpt

results of a user-item bipartite graph and a user-tag bipar-

tite graph.

(i) Ratings are not considered, rather a binary repretienta

of (0, 1) corresponding to (connected, not connected) is

employed.

(iif) The algorithm maps a user to a subset of users who are
similar to a tag instead of mapping a user to items as in the

hitting time algorithm.

Specifically, Shang et al.'s method goes as follows: for a use
u and an objectr thatu has collected, set,, = 1, anda,, = 0,
otherwise. In the case of a taga;,; = 1 if u has tagged an object
with s, andaj,, = 0, otherwise. Given a target user Shang et
al. first distribute the resource (or rating power, usuady t® 1
initially) of v to

Ava

k@) %)

Tav =

wherek(v) is thedegreeof v in the user-item bipartite graph. Here-
after, the similarity between and each usev with v being the
target user is calculated as

- >

aEO

- k(v) Z

wherek(«) is thedegree of itenw in the user-item bipartite graph,
andO is the set of items.

The similarity measure between the tags @ind the tags of is
computed as

Aua XTav

k(e)

Aua X Aya

k@) (6)

S

uo = k’(v) Z k’ (t) %

wherek’(t) (k’(v), respectively) is thelegreeof tag ¢ (usero, re-
spectively) in the user-tag bipartite graph, d@nd the set of tags.
The two similarity measures are combined in additive fastae
follows:

Syo = Asup +(1— A)s;w

(8)

wherel is a tuning parameter. Once eacthas been calculated for
each(v, u) pair, the preference af on « is computed as

*
Poa = § SuvQua

u*ov

9)

A={C}
B={CD}
Cc={D}

Figure 2: Directed graph of a simple system

All of the items thatv has not rated are sorted and the top-
items are recommended o0 As was shown, this system is a direct
collaborative filteringsystem, while the hitting time algorithm em-
ploys arandom walkerto connect a usew to items by traversing
user nodes.

3 GRAPH TRAVERSAL THROUGH A

MARKOV PROCESS
Before proposing our solution, we offer a brief explanafigimough
an example) of how Markov processlescribes therobabilitiesof
a random walker arriving at a nogérom a nodei, which we term
pi,j» given an increasing time horizaen

ExAmMPLE 1. Let{A,B,C,D} be a set of nodes, its adjacency
lists and the corresponding graph are as shown in Figure 2.

The system could be represented as a stochastic transiimixm
L as follows:

0.0 0.0 0.33 0.0
I= 0.0 0.0 0.33 0.5
1.0 0.5 0.00 0.5
0.0 0.5 0.33 0.0

Hence, the initial probability of arriving d from C is given by
as,4 OF % Note that the columns dfsum to 1, i.e.}; p;,j = 1, for
all time t. We can find the probability of; ; for anyt by simply
calculatingl; ; € A’. Let's analyze the process of arrivingfrom
D. Attimet = 1, we have

0.0 0.0 0.33 0.0
Il = 0.0 0.0 0.33 0.5
1.0 0.5 0.00 0.5
0.0 0.5 0.33 0.0

which is theinitial representation and shows no path fronto A,
whereas at = 2, we have

0.33 0.16 0.00 0.16
12 = 0.33 042 0.16 0.16
0.00 0.25 0.66 0.25
0.33 0.16 0.16 0.42

Hence, there is é chance of arriving at from D att = 2. There
are five possible 2-step trips that we could have taken foire.,

{{B,C}.{B,D}.{C,A}.{C,B}.{C,D}}



Of these, only one lands us i1 Note that our chance of arriving
at C from D increases with respect to our chance of arriving at any
other node asincreases. That is becauSéas thehighestdegree

of the set of nodes in the graph.

Ast increases, the elementsiofonverge to probabilities that do
not change with subsequent iterations of kfi@rkov processThis
state is known as thgtationary distribution For this example, the
stationary distribution is

0.125
0.250
0.375
0.250

0.125
0.250
0.375
0.250

0.125
0.250
0.375
0.250

0.125
0.250
0.375
0.250

138 =

Therefore, forn > 38 the probabilities of.” no longer change.
Observe that for all nodes ire L, the most likely destination when
leavingl is C, since the stationary distribution favors nodes with the
highestdegree, which should be kept in mind when we discuss our
proposed solutiord

4 PROPOSED SOLUTION

The above-mentioned algorithms, as well as the Markov pice
hold the critical elements in solving the Long Tail recommigtion
problem. The elements are specifically

(1) A third set of nodes that characterizes the set of ugers
and/or the set of itembto enhance the process.

(2) A Markov process allows us to simulate the hitting time
algorithm by showing the probability of a random walker
leaving a user nodieand arriving at an item node

(3) We would like the process to favor items that pertain to
genresfavorableto a user, havdew ratings, and have a
highaverage rating.

We seek to combine these elements in our proposed soluon, i
our method, as follows:

(1) Adds a set of nodes that represents additional informa-
tion relatingI to U. This set of nodes creates additional
paths from a user to a preferred item. We will show that
if the information contained in the nodes Gfadequately
describe a relationship betweémndU, the resulting tri-
partite graph will contain shorter paths betweeand i
than were available in the bipartite graph. In other words,
there will be “express lanes” that more expeditiously con-
nectu andi.

(2) Employs a Markov chain to simulate the hitting time al-
gorithm. This allows us to quantify the probability of

arriving at each of the itemise 1.

Critical to our solution, however, is the balance of a traffése-
tween the implementations of otripartite graph and theMarkov
chain Specifically, while the tripartite graph adds a significant
number ofshorter pathdetweenu and a preferred itemand the
Markov process allows us to calculate the probabilities afriv-
ing at items that (s)he has not yet rated, as the tifoethe Markov

chain increases, the process will favor items with moredinkn
other words, as increases so does the probability of arriving at an
item with many ratings—a short-tail item. We give specifitails

of the implementation of the tripartite graph and Markoviohze-
low and describe in more detail the benefit they provide olutiem
and the details of their implementations.

4.1 The Tripartite Graph

Representing our recommendation system as a tripartighdras
significant advantages over a simple bipartite graph. @enghe
user-item bipartite graph as shown in Figure 3(a). The kipar
structure is such that usgmwould only be recommended items 1, 2,
and 3 through a random walker. Since the long tail item 4 isatis
nected from the user network af A will not be recommended this
item. However, suppose we add another dimension to oureatatas
such as genre. Let the set of genregBgr'} and the items belong
to the following sets$ = {1, 4} andT = {2, 3}. We now represent
the dataset as a tripartite graph as shown in Figure 3(b)., Mow
has a path to long tail items through the categ&inBy including
extra dimensions to the graph, we allow users to access teons i
in the long tail that are to their liking, e.g., the relativéw links at
item 4 would give the random walker a higher probability oiinge
atitem 4.

4.2 Connecting the Tripartite Graph

As mentioned earlier, the bipartite graph connects a setsef u
nodesU and item node$ through a set of edgds where an edge
(i,j) € E connects a userto an itemj. The weight of the edge is
therating thati assigned tg.

We introduce a third set of node€s The elements in the set
arefeaturesthat describe/ or 1.1 Note that this approach differs
significantly from that of Shang et al. [18], since the lattennect
U to I andU to C separately and then additively combine the hitting
times from each usar; to another uses;. Hence, their approach
would represent the system shown in Figure 3(b) as in Fig(ge 3
instead. Hence, a random walker would never be directly ectied
from I to C. The resultant connections frobi to C andU to I
essentially combine the results of two bipartite graphsdbes not
directly join C into the bipartite graph, whereas our method allows
for traversal between all sefsU, andC, even though it comes at a
cost.

4.3 Limitations of Tripartite Graphs

By employing the tripartite graph as shown in Figure 3(b),les=

the hitting time property of non-symmetry between; anda; ;.

In short, this is the strength behind the hitting time altfon and
absorbing cost algorithms proposed by Yin et al. [21]. Tladir
gorithms perform well because the number of steps taken &om
item j to a useru better describes the uniqueness of the item than
calculating the number of steps to regcfiom u. Since we lose
this property of non-symmetry, we are not able to have thekmar
process mature to stationary distribution However, the process
becomes valuable in its earlier stages (i.<,7), since it allows us

1These features could contain demographic informaicsuch as age, gender, or oc-
cupation. They could also describe the items, such as gezing la description we
used earlier.



(b)

(a)

Figure 3: (a) A simple user-item bipartite graph, (b) a tripartite graph with new path created from A to 4, and (c) the Tripartite

approach presented by [18]

to see how a random walker would traverse the graph givenra sho

time horizon. We will argue that the short time horizon is &dre
representation of reality than the stationary distributio

4.4 Traversing the Bipartite Graph Through a
Markov Process

Initially, a tripartite graph as applied to the Long Tail Blem only
shows connections between a ugend the items (s)he has rated
and between and the genre of items rated by Clearly, this is not
useful in predicting ratings for items not yet ratecibyl he Markov
process, however, allows us to see the probabilities ofingrat dif-
ferent item nodes for each increasing value aé demonstrated in
Example 1. With respect to Example 1, the graph initiallydies
probabilities for

8 8
|nodes|>2 16
= 50%

of the possible paths. However, foe 2, we have the probabilities
for % = 87.5% of the possible paths. By 4, we have a probabil-
ity for all possible paths. With respect to the MovieLensagat
that we have analyzed, there are initially 1,000,209 ratimghich
represents

1,000, 209 1,000, 209
|users| X |movies| 6,040 X 3,607
= 4.59%%

of the total possible ratings. However, observe the folimwalues
for ¢:

2http://www.grouplens.org

13,515, 389
= P ——————— =62%
6,040 X 3,607
22,384,240
= —————— =100%
6,040 X 3,706

Hence, each of the usetise U has a 100% probability of arriving
at all the items € I aftert = 2.

4.5 Connectedness-Descriptiveness Trade-Off

So far we have described two fundamental elements to ouopeab
recommendation system. First, an additional set of natlézat
greatly enhancedescriptiverepresentation of the relationship be-
tweenU andI and thus a potentially greater infrastructure for build-
ing short paths betwedh and the long tail items if. Second, the
Markov chainthat allows us to generate probabilities for arriving at
unrateditems based on our new tripartite structure.

Assume that we can quantify tllescriptivenessf the tripartite
graph based on how the nodes are currently connected. In othe
words, we assign the degree to which the graph actually septe
the tastes of the users A with a value denoted. Initially, D
is high as it shows connections between the users and itezyis th
actually rated. This arbitrary value can be greatly enhanced by
adding the nodes i@ in that we now know how users prefer differ-
ent genres and how those genres related to the itethsNiow, let
us quantify theconnectednessf graph as an arbitrary valde This
value has a more concrete representation as it can be asslowith
the degree to which the Markov process has progressed teward
stationary distribution. Initially, this value is low. Rige 4 shows
the abstract representation of h@wandT relate ag increases.

The critical relationship is that as the Markov chain preges to-
wards a stationary distribution, tikennectivityobviously increases.
However, thadescriptiveness eroded in that the degree to which
the process has progressed towards a stationary distribistithe
degree to which the process merely favors nodes with a higrede
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Figure 4: Abstract depiction of Connectivity-Descriptiveness
trade-off as a function of ¢

or short head items. At that point, the paths no longer reptethe
potential infinite variations that we see in user tastes. yTim-
ply assign to a user the itemsi that are most popular. We argue
that the stationary distribution is not representative oéer’s pref-
erence. As shown in Figure 4, the descriptiveness of thehgisap
reducedto returning for each node,

degree of
—_— 10
[nodes inL|2 (10)
For this reason, we employ the Markov process for small wlue
of ¢ in order to increase theonnectivity but end the process once
the descriptivepower of the graph significantly decreases, which
lies theConnectedness-Descriptivenéssde-off.

5 IMPLEMENTATION DETAILS

Up till now, we have merely described principle foundatidroor
recommendation process. We now describe the details ofriple
mentation.

5.1 Edge Weights

With respect to the edges connectifigand, for a user: and item
i theedge weightv is computed as follows:

rating(u, i)

Wy,i=—o———————=
“! 7 ¥ jep rating(u. j)

(11

whererating(u, i) refers to the rating given to itetrby useru.

Creating the set of edges betwdérandC and the set of edges
betweenl and C, however, is not as straight forward. That is be-
cause the nodes @f generally have direct connection with either
U or I, but not both. As we often deal mainly with the genre of
an item as our sef in our experiments, we describe the approach
to creating edge weights fromto U andC to I by illustrating the
process of adding genres to our bipartite graph. Given thates
describe items, we would connect a geare C to an itemi € I
if i corresponded te and set as itsveightthe average rating given
to i. While we could simply set a binary weight representing ei-
ther membership or no membership, theerage ratingfacilitates
random walkers to gravitate towards the better rated movies

For the connecting weights betwe€randU, a genrec is con-

to c. Theweightof the connection is the average rating thajave
to the set of items (s)he rated that correspond. télereafter, we
create the edge weight connectimgp ¢ as follows:

avg_rating(u, c)

Ljec avg-rating(u, j)

(12)

Wu,c =

whereavg_rating(u, c) is the average rating thatgave to items of
featurec.

The edge weight connecting a featuréo an itemi is defined
below.

avg_rating(i)

2 jec avg-rating(j) (13)

We,i =

whereavg_rating(i) is the average rating given idrom all users.
Hence, when a random walker arrives at a featuirem a usen,
the walker will have a greater probability of arriving at aenn i
that has been rated highly.

We note that the relationship of nodes frahto I, as defined in
Section 6, is one to many, while the relationship betwé¢a U is
many to many. The former is important because items can be fro
several different genres. For example, a movie may be a roman
tic comedy. However, for the purposes in conducting our eicgli
study, we considered a romantic comedy to be a separatethanre
a comedy or a romance. Whether this is the most effective adeth
would be a rich area of future experimentation. Indeed, tethod-
ology behind adding a third, or perhaps fourth or more, etere
the bipartite graph should prove to be fruitful. Howeveisilikely
that the complexity of the procedure is what has discouragec
use ofk-partite graphs, wherke > 2.

5.2 Adjacency Matrix

The tripartite graph is translated to adjacency matri>as would

be the case for representing any graph as a matrix. For eeampl
the graph shown in Figure 3(b) could easily be translatedtach
jacency matrix where we to have the ratings{fat B, C, D, E}.

6 EXPERIMENTAL RESULTS

We used the MovieLens dataddor conducting the performance
evaluation of our proposed Long-Tail recommendation sysiad
compare our method against those proposed by Yin et al. [21] o
two metrics:Recall@N [10] andDiversity[3], which are formally
defined below. These methods were used in [21]. We compared ou
experimental results to those in [21] using the MovieLensskt
and treated as our baseline thiting time algorithmproposed in
[21]. First of all, we divided the MovieLens dataset into aitiing
setM and a testing set. For each movie itemgiven 5 stars by a
useru, we randomly selected 1,000 items not ratecubgnd com-
pute the scores far as well as the 1,000 items. We then formed a
ranked listr of these 1,001 rated items. Based on this hst@N
=1ifier,and 0 otherwise.

> hit@N

Recall@N =
L]

(14)

3The MovieLens database is a large movie ratings databaspas®u of approxi-

nected to a user if u has rated at least one item that corresponds mately 11 million ratings of around 8,500 movies.
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where|L| is the size of the test set, and

| UyeUu Ru|

] (15)

Diversity =

whereU is the set of userd,is the set of items, ang,, is the set of
recommendations for usere U.
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Figure 6: Results of our proposed method compared to the two
absorbing cost methods and a hitting time method adopted by
[21]

6.2 Performance Evaluation Summary

We randomly selected 200 users and formed a set from theﬂop-l We purport that the proposed a|gorithm performs very weth€o

items recommended to these users. A tdgkersityscore translates
into more long-tail items being recommended [8]. The imnbuit
is that if a method recommends relatively few items, thesmst
tend to be popular short head items [15]. By contrast giieater

pared to the excellent methods proposed in [21] due to thelat
the added set of feature nodésprovide anexpress landrom a
useru to the set of itemg that are highly rated. The critical com-
ponent to guiding a user to items that are specific to the sdbat

the number of unique items recommended to the set of use's, th the number of nodes i@l is 301, which represents the combination
greaterthe probability that long tail items are found among such & of genres that describes a movie, rather than the 18 atomiege

set.
We ran our proposed solution for valuesref {3, 5, 7} and com-

This puts the random walker into a more specific category her
it has a higher chance of reaching quality long-tail itemmeulgh

pared them to the two absorbing time algorithms (AC1 and AC2) other users connected to those items. As depicted in Figade 7

and thehitting time(HT) algorithm proposed by Yin et al [21].

6.1 Performance Evaluation

We first measureflecall@N for our proposed recommendation sys-
tem based on T3, T5, and T7 referring to the Markov processavhe
t =3, 5, and 7, which is depicted in Figure 5. The results, aesho
in Figure 5, illustrates that our recommendation algoritivorks
best for the lower values of As mentioned previously, as the pro-
cess progresses towards the stationary probability, teerigéive-
ness of the graph is lost. Hence, for 7, the ability of the model
to recommend long tail items breaks down. Figure 6, whiclwsho
the comparisons between our results and those archivedLhyitj2
dicates that our proposed recommendation system at zoghand

t =5 edges out the absorbing cost methods for PosNian 0.40.

a random walker arrives at a genre of one of the movies favored
by u. After the walker arrives at the items rated highly that are
from the feature;, the random walker can then connect back with
users who have similar tastes (see Figure 7(b)). Furthernioom
these users, the random walker can arrive at items withisdhse
space ofl and thereby find potential highly rated long-tail items
(see Figure 7(c)). Hence, the proposed algorithm targetssitin
specific regions of the graph rather than a “shotgun” apprasdc
recommending a greater number of unique items across afi.use

7 CONCLUSION

The seminal works of Yin et al. [21] and Seng et al. [18] have
laid the foundation for representing the user-item intéoacas a
bipartite graph and appropriately traversing it in ordeptovide

In comparing the performance of our recommender with the one recommendations. We adopt elements from these methodsatecr

achieved by [21] in terms of thdiversitymetric, Table 1 shows that
thehitting time[13] andabsorbing cosf11] algorithms recommend
a wider diversity of items by a significant margin. Howeveg w
purport that the proposed solution recommends primdridgher
rated items given that the paths that reaétom U passing through
C arrives at nodes representing itemd ithat have a higher rating.
For this reason, our approach favbigherrated items.

a solution that employs #ipartite graph and aMarkov process
This allows us to extract the most value from each of thesks too
in order to direct random walkers to regions of the graph &nat
specific to the users’ tastes and thereby increase the chizatdbe
random walker reaches a quality long-tail item.

To the best of our knowledge, our proposed long-tail recomme
dation system is the only system that consider using thartiip



Table 1: Diversity scores

| Algorithm [ Diversity Score]| Algorithm | Diversity Score|| Algorithm [ Diversity Score]

t=3 0.27 || AC1

0.425][ HT | 0.41]

t=5 0.15 || AC2

0.42

(b)

(c)

Figure 7: (a) The sets of node#/, C, and I, where a random walker arrives at a set of nodes that represémmovie genres rated high by
a useru, (b) Connecting back to users with similar preferences fortems that pertain to featurec, and (c) Random walker directed to

highly rated items that fall under ¢

graph and a Markov process to suggest long-tail items tsu3ée

performance evaluation as presented in the ExperimentlilRe
section verifies th@niquenessindnoveltyof our recommendation
approach, which further enhances existing algorithms ikingga
long-tail item recommendations.
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