Announcements

- Tutorial: derivation of the Gibbs sampler
- Meet in pairs to discuss
- Quiz #2 will cover the main ideas of recent lectures and the tutorial
- Coming up: LDA project

Objectives

- Pose questions about how to use the samples
- Understand the behavior of the Gibbs sampler for clustering using the Mixture of Multinomials model
- Review the experimental results

Acknowledgments

- Dan Walker’s Ph.D. dissertation: ch. 2

What Now?

- \(C \leftarrow \text{GibbsSampler}(x, a, b, \text{burn}, \text{length}) \)
- Now we have a matrix \(C \) of samples
 - \(c_{d,j} \) is the \(j^{th} \) sample for the \(d^{th} \) document
- How can we best use \(C \) to assign documents to clusters?
- Four questions:
 - How many samples should we discard (burn)?
 - How many samples do we need to take (length)?
 - How should we summarize the samples?
 - MAP sample?
 - Random sample?
 - Marginal posterior?
 - Is it worth it?

Convergence and # Samples

- Time-series of likelihood \(p(x, c | a, b) \)
 - gives evidence of MCMC chain convergence (in distribution) very early

Del.icio.us Enron 20 Newsgroups
Single-Sample Summarization

- **MAP Sample**
 - Choose the sample with the highest likelihood
 \[\text{label}_d \leftarrow \arg \max_{c_d \in \mathcal{C}_d} p(c_d | x, \alpha, \beta) \]
 - A good candidate since quality is high according to model

- **Random Sample**
 - Chose an arbitrary sample after burn
 - We can just use the first sample after burn, and not take any more samples
 - Cheap!

Multi-Sample Summarization

- **Marginal posterior**
 - Or just "marginal"
 - Choose the mode of the document’s (post-burn) sample vector
 \[\text{label}_d \leftarrow \arg \max_c \sum_i \delta(c_{d,i}, c) \]

Non-Identifiability

- Cluster labels have no real meaning
 - If we label all of the 1s as 2s and the 2s as 1s, nothing has changed
 - This can make it impossible to use summarizations that use more than 1 sample
 - If labels switch mid-chain, then the resulting distributions may turn out uniform

- To diagnose label-switching,
 - \(p_{\text{burn}+1}(w|c) \) was calculated for a reference sample (after burn-in)
 - \(p_i(w|c) \) also calculated for subsequent samples \(\text{burn} + 1 < i < \text{length} \)
 - For all pairs of classes, compute KL-divergence
 \[KL(p_{\text{burn}+1} || p_i) \]

What’s going on?

- Stuck in one region of the state space
- Is that bad?

20 Newsgroups

<table>
<thead>
<tr>
<th>Metric</th>
<th>Marginal</th>
<th>MAP</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Measure</td>
<td>0.42174</td>
<td>0.42017</td>
<td>0.42118</td>
</tr>
<tr>
<td>VI</td>
<td>2.14728</td>
<td>2.16088</td>
<td>2.15931</td>
</tr>
<tr>
<td>ARI</td>
<td>0.27530</td>
<td>0.27507</td>
<td>0.27692</td>
</tr>
<tr>
<td>V-Measure</td>
<td>0.55637</td>
<td>0.55330</td>
<td>0.55405</td>
</tr>
<tr>
<td>Q_2</td>
<td>0.73058</td>
<td>0.72968</td>
<td>0.72969</td>
</tr>
</tbody>
</table>

20 Newsgroups: 140 Chains, 750 Samples each
Enron

<table>
<thead>
<tr>
<th>Metric</th>
<th>Marginal</th>
<th>MAP</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Measure</td>
<td>0.35023</td>
<td>0.35100</td>
<td>0.34989</td>
</tr>
<tr>
<td>VI</td>
<td>3.50433</td>
<td>3.49994</td>
<td>3.50624</td>
</tr>
<tr>
<td>ARI</td>
<td>0.13499</td>
<td>0.13564</td>
<td>0.13461</td>
</tr>
<tr>
<td>V-Measure</td>
<td>0.32366</td>
<td>0.32348</td>
<td>0.32322</td>
</tr>
<tr>
<td>Q_2</td>
<td>0.71328</td>
<td>0.71315</td>
<td>0.71309</td>
</tr>
</tbody>
</table>

Enron: 100 Chains, 7300 Samples each

Del.icio.us

<table>
<thead>
<tr>
<th>Metric</th>
<th>Marginal</th>
<th>MAP</th>
<th>Rand</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Measure</td>
<td>0.38591</td>
<td>0.38571</td>
<td>0.38586</td>
</tr>
<tr>
<td>VI</td>
<td>3.74822</td>
<td>3.76847</td>
<td>3.74871</td>
</tr>
<tr>
<td>ARI</td>
<td>0.22893</td>
<td>0.22860</td>
<td>0.22840</td>
</tr>
<tr>
<td>V-Measure</td>
<td>0.47867</td>
<td>0.47850</td>
<td>0.47859</td>
</tr>
<tr>
<td>Q_2</td>
<td>0.72949</td>
<td>0.72938</td>
<td>0.72945</td>
</tr>
</tbody>
</table>

Del.icio.us: 100 Chains, 200 Samples each

Summarization Conclusions

- The Marginal summarization frequently outperforms the other two but ...
- It turns out that the choice of summarizer doesn’t effect cluster quality (according to metrics) too much
- This suggests that the cheapest summary should be used (Random)
 - Huge time savings
 - Small loss of quality

“Random” Summaries

- Choose the nth sample in each chain as the single-sample summary, sweep n (del.icio.us dataset averaged over 100 chains):

Qualitative Analysis

- **Datasets:**
 - ~400 documents each
 - 1 data set very non-uniform, to test effects of uniform priors

<table>
<thead>
<tr>
<th>Data set</th>
<th>Natural Classes</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>del.icio.us</td>
<td>8</td>
<td>Uniform</td>
</tr>
<tr>
<td>Newsgroups</td>
<td>4</td>
<td>Uniform</td>
</tr>
<tr>
<td>Reuters</td>
<td>5</td>
<td>26, 12, 185, 0.8, 34</td>
</tr>
<tr>
<td>Enron</td>
<td>1</td>
<td>Uniform</td>
</tr>
</tbody>
</table>

Table 2.7: Example contingency table showing the relationship of natural classes to clusters produced by the collapsed Gibbs sampler, using the 100th sample as the summary for the 20 Newsgroups data.
Qualitative Analysis - Words

Hyper-parameters: Gibbs

Hyper-parameters: EM

Del.icio.us

20 Newsgroups

Enron
Conclusions

- Gibbs consistently achieves better quality clusters according to all external metrics.