Purpose

- These slides derive a quantity proportional to the posterior probability of the topic assignments.

- Tracking this quantity will help in assessing the convergence of a collapsed Gibbs sampler for LDA to the desired stationary distribution.

Graphical Model with Generative Story

For each topic i:
- Sample a distribution over words.
- For each document j:
 - Sample a distribution over topics.
 - Choose a document length M_j (tokens).
 - For each position j in document i:
 - Sample a topic.
 - Sample a word token from that topic.

Joint Likelihood (2)

\[
P(w \mid z, \alpha, \beta) = \prod_{i=1}^{n} P(z_i \mid \alpha) \cdot \prod_{j=1}^{M} P(w_j \mid z_j, \beta)
\]

- Focusing on the first term:
 \[
P(z_i \mid \alpha) = \prod_{i=1}^{n} \prod_{c=1}^{C} \frac{\Gamma(\alpha_c)}{\Gamma(\alpha)} \left(\sum_{c=1}^{C} \frac{\alpha_c}{\sum_{c=1}^{C} \alpha_c} \right)^{\alpha_c}
 \]

- Focusing on the second term:
 \[
P(w_j \mid z_j, \beta) = \prod_{j=1}^{M} \prod_{w=1}^{V} \frac{\Gamma(\beta_{wz_j})}{\Gamma(\beta)} \left(\sum_{w=1}^{V} \frac{\beta_{wz_j}}{\sum_{w=1}^{V} \beta_{wz_j}} \right)^{\beta_{wz_j}}
 \]

Joint Likelihood (3)

- \(P(z_i \mid \alpha)\) is the Beta function, and \(\Gamma()\) is the Gamma function.
- \(\alpha_c\) is the number of times topic i is assigned to tokens in document d.
- \(\alpha^{(i)}\) is the vector whose elements are $\alpha_i^{(t)}, 1 \leq t \leq T$.
- g is the length T symmetric vector $[a, a, ..., a]$.
- \(\beta_{wz_j}\) is the vector whose elements are $\beta_{wz_j}, 1 \leq w \leq V$.
- β is the length V symmetric vector $[\beta, \beta, ..., \beta]$.
Joint Likelihood (4)

- Putting the parts together:
 \[p(y \mid \theta) = \prod_{i=1}^{T} \left[\prod_{j=1}^{K} \left(\frac{1}{\theta_j + x_j} \right)^{y_{ij}} \right] \]

- After removing constants, the quantity to track is:
 \[r(y \mid \theta) = \prod_{i=1}^{T} \left[\prod_{j=1}^{K} \left(\frac{1}{\theta_j + x_j} \right)^{y_{ij}} \right] \]

- In practice, the logarithm of this quantity will be easier to manipulate.

- Plot the log-quantity at every iteration of the sampler to assess convergence.

Variables:
- \(\theta \) is the vector whose elements are \(\theta_i, 1 \leq i \leq T \)
- \(x \) is the length-\(T \) symmetric vector \([x, \ldots, x] \)
- \(y_{ij} \) is the vector whose elements are \(y_{ij}, 1 \leq i \leq T \)
- \(z \) is the length-\(T \) symmetric vector \([z, \ldots, z] \)