CS 679: Natural Language Processing

Lectures #5: Language Model Smoothing: Discounting

Thanks to Dan Klein of UC Berkeley for many of the materials used in this lecture. Others by Eric Ringger.

Announcements

- Assignment #1
 - Due: Tuesday
- Reading Report #3
 - M&S 6.3-end (of ch. 6)

Objectives

- Discuss metrics for language models
- Discuss LM rescoring
- Get comfortable with the process of factoring and smoothing a joint model of a familiar object: text!
- Look closely at discounting techniques for smoothing language models.

Review: Language Models

- Is a Language Model (i.e., Markov Model) a joint or conditional distribution? Over what?
 \[P(\text{sentence}) = P(w_1 \ldots w_n) \]
- Is a local model a joint or conditional distribution? Over what?
 \[P(w_i|w_{i-1} \ldots w_{i-m}) \]
- How are the Markov model and the local model related?
 \[P(w_1 \ldots w_n) = \prod_{i=1}^{n} P(w_i|w_{i-1} \ldots w_{i-m}) \]

Measuring Model Quality

- Word Error Rate (WER) = \[
\frac{\text{insertions} + \text{deletions} + \text{substitutions}}{\text{true sentence size}}
\]

Correct answer: Andy saw a part of the movie
Recognizer output: And he saw apart of a movie

WER: 5/7 = 71%

- Focused on task-level errors
- The “right” measure or speech recognition, OCR, handwriting reco.

Speech Recognition

- Recall from CS 401R
 - Or refer back to those lectures.
- The value of language models
Speech Reco. & “N-best Lists”

1. How to wreck a nice beach.
2. How to recognize beach.
3. How to recognize a beach.
4. How to recognize uh beach.
5. How to wreck a nice peach.
6. How to recognize speech.
7. How to wreck a nice speech.
8. ...

Language Model Rescoring

1. How to wreck a nice beach.
2. How to recognize speech.
3. How to recognize a beach.
4. How to recognize uh beach.
5. How to wreck a nice peach.
6. How to recognize speech.
7. How to recognize uh beach.
8. ...

New Improved Language Model

Measuring Model Quality

- The Shannon Game:
 - How well can we predict the next word?
 - When I order pizza, I wipe off the____
 - Many children are allergic to____
 - I saw a____
 - You're really good at this.
 - A unigram model is terrible at this! (Why?)

Count: the average number of guesses to fill each word slot.

- Cross Entropy
 - Of a text S (containing n tokens) according to some language model M
 - Under the assumption that language is ergodic*,

$$H_M(S) = H_{\text{cross-entrop}}(S, P_M) = -\frac{1}{n} \log_2 P_M(S) = -\frac{1}{n} \log \prod_{i=1}^{n} P_M(w_{i,j} | w_{i,j-4})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \log_2 P_M(w_{i,j} | w_{i,j-1})$$

* ergodic: relating to a process in which every sequence or sample of sufficient size is equally representative of the whole
Measuring Model Quality

- Cross-entropy:
 - Measured in bits

- Solution: Perplexity
 - Measured in terms of the number of possibilities
 \[PP_m(S) = 2^{\frac{H_e(S)}{\ln 2}} = \sqrt[n]{\prod_{i=1}^{n} P_m(w_i | \Sigma_{i-1,i}^m)} \]
 - Note that even though our models require a stop (<s>) step, we don’t count it as a symbol when computing these averages.

Discounting

- Starting point: Maximum Likelihood Estimator (MLE)
- a.k.a. Empirical Estimator
 \[P_{\text{MLE}}(w|h) = \frac{c(w,h)}{c(h)} \]
 - Key discounting problem:
 - What count \(c^*(w,h) \) should we use for an event that occurred \(c(w,h) \) times in \(N \) samples?
 - Let \(r^* = c^*(w,h) \) as a short-hand notation.
 - Corollary problem:
 - What probability \(p^* = \frac{c^*}{c} \) should we use for an event that occurred with probability \(p = \frac{c}{N} \)

Discounting: Add-One Estimation

- Idea: pretend we saw every n-gram once more than we actually did [Laplace]
 \[\hat{P}(w|h) = \frac{c(w,h) + 1}{c(h) + V} \]
- And for unigrams:
 \[\hat{P}(w) = \frac{c(w) + 1}{N + V} \]
 - Observed count \(r > 0 \) → re-estimated count \(0 < r^* < r \)
 - \(V = N_1 + N_0 \)
 - Reserved \(\frac{1}{N_1 + N_0} \) for extra events
 - Observed \(\frac{1}{N_1} \) is distributed back to seen n-grams
 - "Unobserved" \(\frac{1}{N_0} \) is reserved for unseen words (nearly all of the vocab!)
 - Actually tells us not only how much to hold out, but where to put it (evenly).
 - Works astonishingly poorly in practice.

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>number of word tokens in training data</td>
</tr>
<tr>
<td>(c(w))</td>
<td>frequency (count) of word tokens (w) in training data</td>
</tr>
<tr>
<td>(c(w,h))</td>
<td>frequency (count) of word token (w) following history (h) in training data</td>
</tr>
<tr>
<td>(r^*)</td>
<td>estimated (reweighted) frequency of n-gram</td>
</tr>
<tr>
<td>(r^*_{\text{V}})</td>
<td>estimated (reweighted) frequency of n-gram</td>
</tr>
<tr>
<td>(V)</td>
<td>total vocabulary size (number of word types in training data)</td>
</tr>
<tr>
<td>(N_0)</td>
<td>number of word types with count (r) (wouldn't it be nicer as (V_0))</td>
</tr>
<tr>
<td>(p^*)</td>
<td>(\frac{c^*}{c}) probability of n-gram, on training data</td>
</tr>
<tr>
<td>(p^*_{\text{V}})</td>
<td>(\frac{c^}{c^ + V}) estimated probability of n-gram</td>
</tr>
</tbody>
</table>
Discounting: Add-Epsilon

- Quick fix: add some small ϵ instead of 1
 [Lidstone, Jefferys]

$$P_{add-\epsilon}(w|h) = \frac{c(w,h) + \epsilon}{c(h) + \epsilon V}$$

- Slightly better, holds out less mass
- Still a bad idea

Discounting: Add-Epsilon

- Let $\epsilon = \delta \cdot \left(\frac{1}{V} \right)$

$$P_{add-\epsilon}(w|h) = \frac{c(w,h) + \epsilon}{c(h) + \epsilon V} = \frac{c(w,h) + \delta (1/V)}{c(h) + \delta}$$

- A uniform prior over vocabulary, from a Bayesian p.o.v.

Discounting: Unigram Prior

- Better to assume a unigram prior

$$P_{add-\text{unigram}}(w|h) = \frac{c(w,h) + \delta (1/V)}{c(h) + \delta}$$

$$P_{add-\text{unigram}}(w|h) = \frac{c(w,h) + \delta \tilde{P}(h)}{c(h) + \delta}$$

- Where the unigram is empirical or smoothed itself:

$$\tilde{P}(h) = \frac{c(h) + \delta / V}{N + \delta}$$

CHECK: $\sum_h \tilde{P}(h) = \delta$

How Much Mass to Withhold?

- Remember the key discounting problem:
- What count r^* should we use for an event that occurred r times in N samples?
- For the rich, r is too big
- For the poor, r is too small (0)

$$r = \epsilon (\omega | h) \rightarrow r^* = \epsilon (\omega | h)$$

Idea: Use Held-out Data

Sample #1: N words (or n-grams)
- the
- interest
- rates
- Federal

Sample #2: N words (or n-grams)
- the
- interest
- rates
- Federal

$r = 2$

$r^* = $

[Jelinek and Mercer]
Discounting: Held-out Estimation

- **Summary:**
 - Get N samples (sample #1)
 - Collect the set of types occurring r times (in sample #1)
 - Get another N samples (sample #2)
 - What is the average frequency of those types in sample #2?
 - e.g., in our example, doubletons occurred on average 1.5 times
 - Use that average as r^*
 - $r^* = 2 \rightarrow r^* = 1.5$
- In practice, much better than add-one, etc.
- Main issue: requires large (equal) amount of held-out data

What’s Next

- **Upcoming lectures:**
 - More sophisticated discounting strategies