Objectives

- Discuss iterative formulation of the explore() sub-routine for DFS
- Find shortest paths
- Formulate problems as graph problems on weighted graphs
- Introduce Dijkstra’s algorithm

Recall: Chapter 3 vs. Chapter 4

- Chapter 3 is all about connectivity in graphs
 - Formulating problems as graphs
 - Can I get from a to b?
- Chapter 4 is all about paths in graphs
 - Formulating problems as weighted graphs
 - What’s the cheapest (e.g., shortest) path from a to b?

Graph Exploration

```
procedure explore (G, v)
Input: Graph G = (V, E), directed or undirected; vertex v ∈ V
Output: For all vertices u reachable from v, visited(u) is set to true.

visited(v) = true
previsit(v)
for each edge (v,u) in E
  if not visited(u) then explore(u)
postvisit(v)
```

How to make iterative?
- Use a stack
 - Maintaining stack as we go
What property must you preserve?
- Graph traversal order
 - Some pre- & post-

Stack
Iterative Explore() for DFS

procedure exploreIter (G, v)
Input: Graph G = (V, E), directed or undirected; vertex v ∈ V
Output: For all vertices u reachable from v, visited(u) is set to true.

Let K be an empty stack
visited(v) = true
K.push(v) // K contains only v

while K is not empty:

while there exists node w adjacent to u=top(K) // i.e., an edge (u,w)
(in ascending order) such that visited(w) do
visited(w) = true
K.push(w)

x = pop(K)
postvisit(x)

DFS for Shortest Paths?

Edges as Strings

DFS for Shortest Paths?

Edges as Strings

Figure 4.8 Breadth-first search.

procedure bfs(G, x)
Input: Graph G = (V, E), directed or undirected; vertex x ∈ V
Output: For all vertices u reachable from x, dist(u) is set to the distance from x to u.

for all u ∈ V:
dist(u) = ∞
prev(u) = nil

dist(x) = 0
Q = [x] (queue containing just x)
while Q is not empty:
 u = dequeue(Q) // dequeue
 for all edges (u,v) ∈ E:
 if dist(v) = ∞:
 inject(Q, v) // enqueue
 dist(v) = dist(u) + 1
 prev(v) = u

BFS
BFS Example

Additionally, track the prev / parent attribute

Analysis: BFS

Figure 4.3: Breadth-first search.

Correct?

- Idea: layers
- For each distance $d = 0, 1, 2, ..., \text{there is a moment at which}$
 1. all nodes at distance $\leq d$ from s have their distances correctly set
 2. the queue contains exactly the nodes at distance d
 3. all other nodes have their distances set to infinity
- How to prove?

3 Questions

- Is it correct?
- How long does it take? (done)
- Can we do better?

BFS

procedure bfs(G; s)
Input: Graph $G = (V; E)$, directed or undirected; vertex $s \in V$
Output: For all vertices u reachable from s, dist(u) is set to the distance from s to u.

for all $u \in V$:
 dist(u) = ∞
 prev(u) = nil

dist(s) = 0
Q = [s] \// queue containing just s

while Q is not empty:
 $u = \text{eject}(Q)$
 for all edges $(u; v) \in E$:
 if dist(v) == ∞:
 $\text{inject}(Q; v)$
 dist(v) = dist(u) + 1
 prev(v) = u

The “Agenda” is a Queue

Similarity to Iterative Explore() for DFS

procedure explore(G; s)
Input: Graph $G = (V; E)$, directed or undirected; vertex $s \in V$
Output: For all vertices u reachable from s, visited(u) is set to true.

for all $u \in V$:
 visited(u) = false

previsit(s)
visited(s) = true
K = [s] \// stack containing just s

while K is not empty:
 while there exists node v adjacent to top(K) in ascending order such that visited(v) do
 prev(v) = true
 push(K; v)
 end
 v = pop(K)
 postvisit(v)

The “Agenda” is a Stack
Formulating problems as problems on graphs

- In designing a graph-based formulation of a problem, there are three main decisions to be made:
 - What is stored in each node?
 - What does it mean for two nodes to be connected by an edge?
 - What property should be extracted from the graph?

Formulating problems as problems on weighted graphs

- In designing a graph-based formulation of a problem, there are four main decisions to be made:
 - What is stored in each node?
 - What does it mean for two nodes to be connected by an edge?
 - What does the weight on an edge represent?
 - What property should be extracted from the graph?
- What kinds of problems make sense as weighted graphs?

Distance as Weighted Edges

Use BFS?

Dummy Vertices

Good Idea?
“Alarm Clocks”

- Set an alarm clock for node x at time t.
- Repeat until there are no more alarms:
 - Say the next alarm goes off at time t, for node x. Then:
 - The distance from s to x is t.
 - For each neighbor y of x in G:
 - If y is already set for some time $t' < t$, then reset it to this earlier time.
 Do we really need the ticking clock T?

Implementation

- We just care about the “alarm clocks” going off in order.
- What do we need to manage them?
- Priority Queue

#### Operation	Description
Insert | Add a new element to the set (also: “Enqueue”, “Inject”)
Decrease-key | Accommodate the decrease in key value of a particular element
Delete-min | Return the element with the smallest key, and remove it from the set (also: “Dequeue”, “Eject”)
Top | Return the element with the smallest key
Make-queue | Build a priority queue out of the given elements, with the given key values

In many implementations, this is significantly faster than inserting the elements one by one

Dijkstra’s

Figure 9.9 Dijkstra’s shortest path algorithm.

- **Input:** Graph $G = (V,E)$, directed or undirected; positive edge lengths $|e| = |(u,v)|$, vertex $v \in V$
- **Output:** For all vertices u reachable from s, $dist(u)$ is set to the distance from s to u.

```
for all u \in V:
    dist(u) = \infty
    pred(u) = nil
H = \text{makeheap}(\{ (u, \text{dist}(u)) \}) [using \text{dist-values as keys}]
while H is not empty:
    u = \text{decreasekey}(H)
    for all edges (u, v) \in E:
        if dist(u) + |(u,v)| < dist(v):
            dist(v) = dist(u) + |(u,v)|
            pred(v) = u
            \text{decreasekey}(H, v)
```

Efficiency?

See next lecture!

Example

The “Agenda” is a Priority Queue

<table>
<thead>
<tr>
<th>Priority Queue</th>
<th>A:0 B:∞ C:∞ D:∞ E:∞</th>
</tr>
</thead>
</table>

Length of shortest paths:

<table>
<thead>
<tr>
<th>Priority Queue</th>
<th>A:0 B:4 C:2</th>
</tr>
</thead>
</table>

Example

<table>
<thead>
<tr>
<th>Priority Queue</th>
<th>A:0 B:3 C:7 D:6 E:7</th>
</tr>
</thead>
</table>

Length of shortest paths:

<table>
<thead>
<tr>
<th>Priority Queue</th>
<th>A:0 B:3 C:7 D:6 E:7</th>
</tr>
</thead>
</table>
Example

Length of shortest paths:

| Priority Queue | E:6 |

Example

Length of shortest paths:

| Priority Queue | E:6 |

Example

Length of shortest paths:

| Priority Queue | empty |

Next:

- Alternate formulation of Dijkstra’s
- Discussion of possible Priority Queue implementations

Assignment

- HW #12.5