Objectives

- Review the main ideas of computational “Tractability”, including:
 - Equivalence of search & decision problems
 - Formulation of optimization problems as search/decision problems
 - P, NP
 - Polynomial-time Turing Reduction
 - NP-Complete
 - P = NP?
- What to do when you are faced with a hard problem

Decision Problems

- A decision problem is a question in some formal system with a yes-or-no answer, depending on the values of some input parameters.
- Decision algorithm C, a verifier!
 - Takes two inputs:
 - instance I
 - proposed solution S
 - We say S is a solution to I iff $C(I,S) = \text{yes}$
- Examples:
 - Given a variable assignment and an expression in 3-CNF, is the expression satisfied by the assignment?
 - Given a Hamiltonian circuit and a budget, does the cost of the Hamiltonian circuit come under budget?

Search Problems

- A search problem requires finding a solution, possibly subject to some constraint(s).
- Given an instance I
 - Input data specifying the problem instance at hand
 - Goal: to find a solution S
 - An object that meets a particular specification
 - If no such solution exists, then say so
 - S must be able to be quickly checked for correctness
 - S must be concise (length bounded by polynomial in $|I|$)
 - i.e., there exists a polynomial-time algorithm with arguments (I,S) that decides whether or not S is a solution of I
 - Any search problem can be represented by its corresponding decision problem.

Optimization Problems

- An optimization problem requires finding the best solution from all feasible solutions.
- More formally, an optimization problem A is a 4-tuple (I, f, m, g), where
 - I is a set of instances
 - For an instance $x \in I$, $m(x)$ is the set of feasible solutions to x
 - For an instance x and a feasible solution y, $m(x,y)$ denotes the measure of y, which is usually a positive real number
 - g is the goal function: either minimization or maximization
- The goal is then to find for a given instance x an optimal solution y:
 - Optimal measure $A(x) = g(y^*)$
 - Optimal solution $y^* = \arg\max_{y \in m(x)} g(y)$
 - Note: $m(x,y) = A(x)$

Combinatorial Optimization Problems

- A special case of optimization problems.
- Where the set of feasible solutions is discrete
 - or can be reduced to a discrete one
Traveling Salesman Problem

- **Rudrata or Hamiltonian Cycle**
 - Cycle in the graph that passes through each vertex exactly once

- **Least Cost or “shortest”**

TSP

- How to cast the TSP as an optimization problem?
 - **TSP-OPT:**
 - Input: A matrix of distances between cities
 - Output: The shortest tour passing through all cities
 - As a search problem? (Hint: use a budget)
 - **TSP-SEARCH:**
 - Input: A matrix of distances AND a budget b
 - Output: A tour passing through all cities and having length $\leq b$, if such a tour exists
 - As a decision problem? (Hint: use a budget)
 - **TSP-CHECK:**
 - Input: A matrix of distances, a budget b, a tour
 - Output: YES/NO, does the tour pass through all cities and have length $\leq b$?

- Relationships?

P

- P is the set of all search problems that can be solved in polynomial time using a deterministic Turing Machine (TM)
 - Equivalently:
 - All languages decidable in polynomial time
 - Efficiency:
 - All polynomial time algorithms are efficient.
 - $O(n), O(n^2), O(n^{1000})$, etc. are all efficient!

NP

- NP is the set of all search problems that can be solved in polynomial time on a non-deterministic TM
 - Equivalently:
 - All search problems with polynomial time decision algorithms
 - All languages decidable in non-deterministic polynomial time

NP (continued)

- One method for solving a problem in NP by deterministic means:
 - Explore all the computational paths of the non-deterministic TM
- What does that look like? A sketch:
 - Requires exponential time (using a deterministic TM)
 - Remember: this was just a sketch

Height of the tree is polynomial in the input size
P, NP

- **P** = problems that can be solved in polynomial time on a deterministic Turing Machine.
- **NP** = problems that can be solved in polynomial time on a non-deterministic Turing machine.

NP-Complete

- **Definition:** A decision problem A is **NP-complete** iff
 - $A \in NP$
 - For all $B \in NP$, $B \leq^p A$
 - i.e., Every problem in NP can be reduced to A by a polynomial-time Turing reduction
 - A is at least as hard as anything in NP
 - An algorithm for A can be used as a subroutine to solve any problem in NP (by way of reduction)

Efficiency Terminology

- **Efficient** means “polynomial time”
- **Tractable** is a synonym for efficient
- NP-complete problems have no known efficient solutions/algorithms
- We call a problem “hard” or “intractable” iff that problem has no polynomial solution.

*Caveat: if P \neq NP

NP-Complete vs. P

<table>
<thead>
<tr>
<th>Hard problems (NP-complete)</th>
<th>Easy problems (in P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>3SAT, HORN SAT</td>
</tr>
<tr>
<td>TRAVELING SALESMAN PROBLEM</td>
<td>MINIMUM SPANNING TREE</td>
</tr>
<tr>
<td>LONGEST PATH</td>
<td>SHORTEST PATH</td>
</tr>
<tr>
<td>3D MATCHING</td>
<td>BIPARTITE MATCHING</td>
</tr>
<tr>
<td>KNAPSACK (α/M)</td>
<td>UNARY KNAPSACK (α)</td>
</tr>
<tr>
<td>INDEPENDENT SET</td>
<td>INDEPENDENT SET ON TREES</td>
</tr>
<tr>
<td>INTEGER LINEAR PROGRAMMING</td>
<td>LINEAR PROGRAMMING</td>
</tr>
<tr>
<td>HUBRATA PATH</td>
<td>EULER PATH</td>
</tr>
<tr>
<td>BALANCED CUT</td>
<td>MINIMUM CUT</td>
</tr>
</tbody>
</table>

P, NP, NP-Complete

- **P** = problems that can be solved in polynomial time on a deterministic Turing Machine.
- **NP** = problems that can be solved in polynomial time on a non-deterministic Turing machine.
- **NP-Complete** = problems that can be reduced to any other problem in NP by a polynomial-time Turing reduction.

Reductions

- $A \leq^p B$ means: “A is polynomial-time Turing reducible to B”

Examples?

- **Algorithm for A**
- **Algorithm for B**
- **Solution for $f(i)$**
- **No solution to $f(i)$**
NP-Complete

- Recall our Definition: A decision problem A is NP-complete iff
 - A ∈ NP
 - For all B ∈ NP, B ≤ₚ A

- Can you use this definition directly to prove that a problem is in NP-Complete?
- Why not?

Proving a Problem is NP-Complete

- Let X be an NP-Complete problem
 - e.g., 3CNF SAT
 - Consider a decision problem Z in NP such that X ≤ₚ Z
 - Then?

Thus, Z is also NP-Complete

To prove Z is NP-Complete:
- 1. Show that Z is in NP
- Easy
- 2. Show that a known NP-Complete problem can be reduced to Z!
 - More fun!

P = NP?

- What if we could identify just one problem in NP-Complete with an efficient solution?
 - Then there is an efficient solution to all problems in NP.
 - Then NP ⊆ P
 - We already know P ⊆ NP
 - So we would conclude P=NP!

Where Next?

- Approximation Algorithms!
 - Intelligent Search
 - Branch and Bound
 - Randomized (Probabilistic) Algorithms
- These approaches are general
 - Many can give approximate answers before they run to completion.