
Unit Testing

Managing implementation
complexity

How many parts does the Space Shuttle have?
Estimates range from 2.5 – 6 million

What would happen if NASA assembled a space
shuttle with "untested" parts (i.e., parts that were
built but never verified)?
It wouldn't work, and in all likelihood you would
never be able to make it work

Cheaper and easier to just start over

Managing implementation
complexity

Individual parts should be verified before being
integrated with other parts
Subassemblies should also be verified before being
combined with others
If adding a new part breaks the system, the problem
must be related to the recently added part
Track down the problem and fix it
This ultimately leads to a complete system that works

2 approaches to programming

Approach #1
"I wrote ALL of the code, but when I tried to
compile, nothing seemed to work!"

Approach #2
Write a little code (e.g., a method or small class)
Test it
Write a little more code
Test it
Integrate the two verified pieces of code
Test it
…

Unit testing
Large programs consist of many smaller pieces

Classes, functions, packages, modules, etc.

"Unit" is a generic term for these smaller pieces
Two important types of software testing are:

Unit Testing
System Testing

Unit Testing is done to test the smaller pieces in
isolation before they are combined with other pieces

Usually done by the developers who write the code

System Testing is done to test the entire system after
all of the pieces have been integrated together

Usually done by a separate software testing team

What unit tests do
Unit tests create objects, call methods, and verify
that the returned results are correct
Actual results vs. Expected results
Unit tests should be automated so that they can be
run frequently (many times a day) to ensure that
changes, additions, bug fixes, etc. have not broken
the code
Notifies you when changes have introduced bugs,
and helps to avoid destabilizing the system

Test driver program

The tests are run by a "test driver", which is a
program that just runs all of the unit test cases
It must be really easy to add new tests to the test
driver
At the end the program, the test driver either tells
you that everything worked, or gives you a list of
tests that failed
Make files should be used to automate the building
and running of the test driver (e.g., $ make test)
Little or no manual labor required to run tests and
check the results

Unit test demo

Classes have Test methods
Unit testing framework (UnitTest.h, TEST macro)
Test driver calls test methods
Run the tests
Modify some tests to fail
Rerun the tests to show the failure messages

Selecting test cases

How do you design test cases for a method?
Ad Hoc testing – try a variety of valid and invalid
inputs, whatever comes to mind
Exhaustive testing – create a test for each distinct
possible path through the method

Trace the line numbers that are executed when the method
executes (1, 2, 10, 11, 12, 10, 11, 12, 13, 17)
Each possible trace is a different "path"
Often the number of possible paths is so large that
exhaustive testing is infeasible

Selecting test cases
We can't be exhaustive, so we instead use code coverage criteria
to guide our selection of test cases

Line coverage – test each line at least once
This is the minimal level of testing, and is usually not sufficient

Branch coverage – test the TRUE and FALSE cases of each branch at
least once
Condition coverage – test ALL possible ways that each condition can
be TRUE or FALSE

Find all primitive boolean subexpressions, create a truth table,
design a test case to cover each row in the truth table

if (a > b && c == 5) {
…

}

a > b c == 5

F F

T F

F T

T T

Code coverage example
Possible test cases

(1) a > b and c == 5
(2) a > b and c != 5
(3) a <= b and c == 5
(4) a <= b and c != 5

if (a > b && c == 5) {
…

}
d = 5;

Which test cases are required for:
Line coverage?

(1) only
Branch coverage?

(1) and any of the other three
Condition coverage?

(1), (2), (3), (4)

What about missing code?

Code coverage criteria helps to ensure that existing
code is tested thoroughly
What if there is no code at all to handle certain kinds
of input?

Programmer forgot to handle some cases

Code coverage doesn't find these errors
Ad Hoc testing can be used to detect unhandled
cases

	Unit Testing
	Managing implementation complexity
	Managing implementation complexity
	2 approaches to programming
	Unit testing
	What unit tests do
	Test driver program
	Unit test demo
	Selecting test cases
	Selecting test cases
	Code coverage example
	What about missing code?

