
Error Handling &
Defensive Programming

Error Handling Concepts
Murphy's Law

"Anything that can go wrong will go wrong"
Error conditions will occur, and your code needs to deal with
them

Out of memory, disk full, file missing, file corrupted, network
error, …

Software should be tested to see how it performs under various
error conditions

Simulate errors and see what happens
Just because your program works on your computer doesn't
mean that it will work everywhere else
You'll be amazed at how many weird things will go wrong when
your software is used out in the "wild"

Error Handling Concepts
What should a program do when an error occurs?
Some errors are "recoverable" - the program is able to recover
and continue normal operation
Many errors are "unrecoverable" - the program cannot continue
and gracefully terminates
Most errors are detected by low-level routines that are deeply
nested in the call stack
Low-level routines usually can't determine how the program
should respond
Information about the error must be passed up the call stack to
higher-level routines that can determine the appropriate
response

Propagating Error Information

Return Codes
Status Parameter
Error State
Exceptions

Return Codes
A method uses its return value to tell the caller
whether or not it succeeded
In case of failure, the particular value returned can
be used to determine the nature of the error
int MyClass::OpenFile(string fileName) {
…
}

MyClass obj;
int result = obj.OpenFile("index.html");
if (result < 0) {

switch (result) {
case -1: … // file doesn't exist
case -2: … // file isn't writable
case -3: … // max number of files already open

}
}

Return Codes

Disadvantages of return codes
You have to use the return value to return error info even if
you'd rather use it to return something else
Every time you call a method, you need to write code to
check the return value for errors

All of the error-checking code obscures the main flow of
the program

It's easy to write code that simply ignores errors because
nothing forces you to check return values

Status Parameter
A method has an additional parameter through which it returns
status information
In case of failure, the particular value returned through the
parameter can be used to determine the nature of the error

void MyClass::OpenFile(string fileName, int * status) {
…
}

MyClass obj;
int result = 0;
obj.OpenFile("index.html", &result);
if (result < 0) {

switch (result) {
case -1: … // file doesn't exist
case -2: … // file isn't writable
case -3: … // max number of files already open

}
}

Status Parameter

Disadvantages of status parameters
Every method call has an extra parameter (but you can use
the return value for whatever you want)
Every time you call a method, you need to write code to
check the status parameter's value for errors

All of the error-checking code obscures the main flow of
the program

It's easy to write code that simply ignores errors because
nothing forces you to check the status parameter

Error State
Methods don't return error info

If something went wrong, you can't tell
Objects store error info internally
If you want to know if failures have occurred, you
must query the object by calling a method

ifstream file;

file.open("index.html");

if (!file.is_open()) {
// file could not be opened

}

Error State

Disadvantages of error state
Every time you call a method, you need to write code to
check the object's error state

All of the error-checking code obscures the main flow of
the program

It's easy to write code that simply ignores errors because
nothing forces you to check the error state

Exceptions

Exceptions are an elegant mechanism for handling
errors without the disadvantages of the other
techniques

Return values aren’t tied up
No extra parameters
Error handling code isn't mixed in with the
"normal" code
You can't ignore exceptions - if you don't handle
them, your program will crash

Exceptions - throw
The throw keyword is used to throw an exception

if (something went wrong) {
throw MyException(a, b, c);

}

Exceptions - try, catch
void DoStuff() {

A();
B();
C();

}

Exceptions - try, catch
void DoStuff() {

try {
A();
B();
C();

}
catch (ExceptionType_1 & e) {

// handle exception type 1
}
catch (ExceptionType_2 & e) {

// handle exception type 2
}
catch (ExceptionType_3 & e) {

// handle exception type 3
}

}

Exceptions - try, catch
void DoStuff() {

try {
A();
B();
C();

}
catch (ExceptionType_1 & e) {

// handle exception type 1
}
catch (ExceptionType_2 & e) {

// handle exception type 2
}
catch (ExceptionType_3 & e) {

// handle exception type 3
}
catch (...) {

// handle all other exceptions
}

}

Exceptions - try, catch
#include <new>
using namespace std;

void DoStuff() {
int * p = 0;
try {

p = new int[10000000000];

… // use the array

delete [] p;
}
catch (bad_alloc & e) {

cout << "Insufficient memory" << endl;
}
catch (exception & e) {

cout << "Error: " << e.what() << endl;
delete [] p;

}
}

Exceptions - try, catchvoid DoSomething() {
try {

A();
}
catch (exception & e) {

cout << "Error: " << e.what() << endl;
}

}

void A() {
try {

B();
}
catch (bad_alloc & e) {

// handle bad_alloc exception
}

}

void B() {
// some code that throws might throw exceptions

}

When an exception is thrown:
1. The program searches the enclosing try for an exception

handler (or catch block) whose parameter matches the thrown
object's type or one of its superclasses

2. The catch blocks are searched in the order they appear in the
file, and the first matching one is used

3. If a matching exception handler is found, the thrown object is
passed to the exception handler, and the handler is executed

4. If the code isn't in a try block, or no matching exception
handler is found, the method aborts and the program searches
the calling method for an appropriate exception handler

5. This process continues up the call stack until either an
appropriate exception handler is found, or the search fails and
the program terminates

finally – Java has it, C++ doesn’t

try {

}
catch (ExceptionType_1 e) {

}
catch (ExceptionType_2 e) {

}
catch (ExceptionType_3 e) {

}
finally {
}

Finally block – code to be executed when the try
block is exited, no matter what (i.e., if an exception
occurred or not)

In C++, use destructors to
achieve finally-like functionality

try {
Object x; // object whose destructor contains

// the “finally” code
}
catch (ExceptionType_1 & e) {

}
catch (ExceptionType_2 & e) {

}
catch (ExceptionType_3 & e) {

}

When an exception is thrown, C++ guarantees that
all objects residing on the stack will be destructed
when they’re popped off the stack

CS 240 Exception Classes

The CS 240 Utilities provide several exception classes
These exceptions are thrown by the Web Access
classes when errors occur, and must be handled by
your code
You may also throw them from your own methods

CS 240 Exception Classes

CS240Exception

InvalidArgumentExceptionInvalidURLException

IllegalStateExceptionIOException

FileException NetworkException

CS240Exception
class CS240Exception {
protected:
std::string message;

public:
CS240Exception() {

message = "Unknown Error";
}
CS240Exception(const string & msg) {

message = msg;
}
CS240Exception(const CS240Exception & e) {

message = e.message;
}
~CS240Exception() {

return;
}
const string & GetMessage() {

return message;
}

};

Handling
CS240Exception's

#include <iostream>
#include "URLConnection.h"
#include "CS240Exception.h"
using namespace std;

void main() {
InputStream * is = 0;
try {

is = URLConnection::Open("http://www.cs.byu.edu/index.html");
while (!is->IsDone()) {

char c = is->Read();
cout << c;

}
delete is;

}
catch (CS240Exception & e) {

cout << "Error: " << e.GetMessage() << endl;
delete is;

}
catch (...) {

cout << "Unknown error occurred" << endl;
delete is;

}
}

Defensive Programming

Good programming practices that protect you from
your own programming mistakes, as well as those of
others

Assertions
Parameter Checking

Assertions
As we write code, we make many assumptions about
the state of the program and the data it processes

A variable's value is in a particular range
A file exists, is writable, is open, etc.
The maximum size of the data is N (e.g., 1000)
The data is sorted
A network connection to another machine was successfully
opened
…

The correctness of our program depends on the
validity of our assumptions
Faulty assumptions result in buggy, unreliable code

Assertions
int BinarySearch(int data[], int dataSize, int searchValue) {

// What assumptions are we making about the parameter values?

…
}

data != 0
dataSize >= 0
data is sorted
What happens if these assumptions are wrong?

Assertions
Assertions give us a way to make our assumptions explicit in
our code
#include <assert.h>
assert(temperature > 32 && temperature < 212);

The parameter to assert is any boolean expression
If the expression is false, assert prints an error message and
aborts the program
Assertions are usually disabled in released software
Assertions are little test cases sprinkled throughout your code
that alert you when one of your assumptions is wrong
This is a powerful tool for avoiding and finding bugs

Assertions
int BinarySearch(int data[], int dataSize, int searchValue) {

assert(data != 0);
assert(dataSize > 0);
assert(IsSorted(data, dataSize));

…
}

string * SomeFunc(int y, int z) {
assert(z != 0);
int x = y / z;
assert(x > 0 && x < 1024);
return new string[x];

}

Exceptions vs. Assertions

If one of my assumptions is wrong, shouldn't I throw
an exception rather than use an assertion?
Assertions are used to find and remove bugs before
software is shipped

Assertions are turned off in the released software

Exceptions are used to deal with errors that can
occur even if the code is completely correct

Out of memory, disk full, file missing, file corrupted, network
error, …

Parameter Checking
Another important defensive programming technique
is "parameter checking"
A method or function should always check its input
parameters to ensure that they are valid
Two ways to check parameter values

assert
if statement that throws exception if parameter is invalid

Which should you use, asserts or exceptions?

Parameter Checking
Another important defensive programming technique
is "parameter checking"
A method or function should always check its input
parameters to ensure that they are valid
Two ways to check parameter values

assert
if statement that throws exception if parameter is invalid

Which should you use, asserts or exceptions?
If you have control over the calling code, use asserts

If parameter is invalid, you can fix the calling code

If you don't have control over the calling code, throw
exceptions

e.g., your product might be a class library

Parameter Checking
int BinarySearch(int data[], int dataSize, int searchValue) {

assert(data != 0);
assert(dataSize > 0);
assert(IsSorted(data, dataSize));

…
}

int BinarySearch(int data[], int dataSize, int searchValue) {
if (data == 0 || dataSize <= 0 || !IsSorted(data, dataSize)) {

throw InvalidArgumentException();
}

…
}

	Error Handling & �Defensive Programming
	Error Handling Concepts
	Error Handling Concepts
	Propagating Error Information
	Return Codes
	Return Codes
	Status Parameter
	Status Parameter
	Error State
	Error State
	Exceptions
	Exceptions - throw
	Exceptions - try, catch
	Exceptions - try, catch
	Exceptions - try, catch
	Exceptions - try, catch
	Exceptions - try, catch
	When an exception is thrown:
	finally – Java has it, C++ doesn’t
	In C++, use destructors to achieve finally-like functionality
	CS 240 Exception Classes
	CS 240 Exception Classes
	CS240Exception
	Handling �CS240Exception's
	Defensive Programming
	Assertions
	Assertions
	Assertions
	Assertions
	Exceptions vs. Assertions
	Parameter Checking
	Parameter Checking
	Parameter Checking

