
What kinds of bugs are there?

(1) program produces incorrect results
 a. incorrect logic
 b. data corruption through errant pointer operation

(2) program crashes
 a. segmentation fault (invalid pointer operation)
 b. abort (unhandled exception)

(3) program never terminates

(4) memory leaks

(5) program is too slow

How many bugs are there?

A typical bug density in industrial code is between 1 and 25 bugs per 1000 LOC

The Applications Division at Microsoft reports between 10 and 20 bugs per 1000
LOC, and about 0.5 bugs per 1000 LOC in released software

How are bugs distributed in the code?

It's natural to assume that bugs are evenly distributed throughout a program,
but it's not true.

Research has shown that:
80% of a system's errors are found in only 20% of its classes or routines
50% of a system's errors are found in only 5% of its classes or routines

Why would that be?

Becoming an effective debugger
Some people seem to find bugs with relative ease, while others struggle
mightily. What makes one person so much better at debugging than another?

Debugging involves diagnosing problems in a system, must like a medical doctor
or car mechanic. In order to effectively diagnose problems in a system, one
must have an accurate and detailed mental model of how the system works (or
should work). Based on such a mental model, one can effectively relate symptoms
back to their root causes.

Customer: “My car makes a strange pinging sound when I brake while in reverse.”
Car Mechanic: “That sound usually means your left-rear gonculator gasket is
leaking and needs to be replaced.”

In programming, what constitutes our “mental model”?

a. Understanding of the program’s design
classes, interfaces, object interactions, control flow

b. Understanding of programming language semantics
binary data representations, runtime stack, heap, language constructs,
pointers, OS and hardware interactions, etc.

Experience also plays a role in effective debugging. A bug is easier to find if
you’ve seen a similar one before.

Avoiding Bugs

The best way to debug your program is to avoid introducing bugs in the first
place.

(1) compile with warnings turned on

(2) careful memory management
 initialize pointers, dangling pointers, memory leaks, out-of-bounds
errors, ...

(3) unit testing
 build a piece, test it, build a piece, test it, ...

(4) defensive programming
 assertions, check parameters

Debugging Process

(1) Find a reproducible test case that causes the program to fail (often it
finds you)

(2) Reduce the size of the input data as much as possible while still preserving
the failure (the simpler the test case, the better)

 a. reduces the amount of code that is executed, thus narrowing the
possibilities

 b. reduces the amount of time it takes to reproduce the error

 c. reduces the volume of debugging output

(3) Determine where in the program the bug manifests itself (not where the bug
occurred, but where it shows up)

 a. the code that produces erroneous output

 b. the place where the program crashed or threw an exception

(4) Locate the code that caused the bug

a. the part of the program that caused the erroneous state may be far

removed and seemingly unrelated to the part of the program where the bug
manifests itself.

b. any code that executes before the point of failure is suspect

c. inspect the state of the program at the failure point to understand in
what ways the program's state is incorrect, and work back from there

d. minimizing the distance, in time and space, between these two points
will help reduce debugging time
 i. reset pointers to 0 when they don’t point to anything valid
 ii. parameter checking
 iii. assertions
 iv. unit test cases find bug before you get far away from the cause

Debugging Techniques

a. Code Reading

b. Trace Debugging
 print statements that indicate:
 (1) where the program is executing
 (2) inspect variable values

helps to determine location of crash and/or source of incorrect or
corrupted data

ToString method on classes (prints contents of object)

take trace statements out after bug is found

leave trace statements in, turn them on and off using #ifdef

c. Logging
 send output to destinations other than the screen
 (files, network logging servers)

different logs for different parts of the program
 (classes, threads, etc.)

different severity levels (DEBUG, INFO, WARNING, ERROR, FATAL, ...)

turn logging on and off depending on what part of the program you're
 in and severity level

d. Progressive Code Elimination
 Blue Wolf

progressively comment out sections of code until problem disappears

use mock objects (i.e., stubs) if code can’t be commented out

e. Finding Memory Management Errors
 memory tracker
 helps find memory leaks and dangling pointers
 homemade as in memory management lecture
 memory allocation library (debug version of new/delete)
 tools like Valgrind

 memory watcher
 helps determine who is trashing a particular part of memory
 home made as in memory management lecture
 debugger

Interactive Debugger

 compling with -g flag

DDD demo

 Open Program

 Source window, interactive gdb window

 Run with command-line arguments (Program/Run)

 Breakpoints

 Stepping
 Step, Stepi, Next, Nexti, Until, Finish, Cont, Undo/Redo, Kill

 Data Display

 Data display window, Display variable, Undisplay variable

 Only displays data for current stack frame, Up, Down

 Status
 Backtrace, Registers

 Watchpoints

 Segmentation Faults & Aborts

 Open Core Dump

 type $ ulimit -c unlimited to enable core dumps

 Attach to Process

	What kinds of bugs are there?
	How many bugs are there?
	How are bugs distributed in the code?
	Becoming an effective debugger
	Avoiding Bugs
	Debugging Process
	Debugging Techniques
	Interactive Debugger

