
 

 

 

 

File Control System 1.0 

 

 

 

Functional Specification 
 
 
 
 
 
 
 
 

Author: Ken Rodham 
Date: December 16, 2004 

Revision: 1 
 



Terminology 
Repository 
The directory/file structure containing the team’s files is called the repository.  It is 
assumed that the repository is accessible to all team members via a shared file system.  
The repository may contain subdirectories to any level of nesting, and each subdirectory 
may contain any number of files.  The top-level repository directory is called the 
repository root directory. 

Workspace 
Each team member has a local (i.e., unshared) copy of the repository on his or her local 
computer.  This local copy of the repository is called a workspace.  A user’s workspace 
is a mirror-image copy of the real repository, containing the same directories and files.  A 
user initially creates their workspace by asking FCS to copy the repository to a specified 
location on their local computer.  This location is called the workspace root directory.  
The user can make changes to files locally in their local workspace, and then, when the 
changes are complete, ask FCS to copy the changes back to the repository and make them 
available to the rest of the team. 

File Revisions 
FCS keeps track of all revisions made to repository files.  For each file, revisions are 
numbered sequentially starting at 1.  The initial copy of a file that is added to the 
repository becomes revision 1, the next update to the file becomes revision 2, and so on.  
While FCS keeps track of file revisions, it does not keep track of directory revisions. 



Configuration 
In order to use FCS, a user must provide the following configuration information: 

1. The full path of the repository root directory.  This should be the same for all 
team members 

2. The full path of their workspace root directory.  This may vary between team 
members because each member may put their workspace at a different location in 
their local file system.  Each member must manually create their workspace root 
directory using regular file system commands 

 
Given this information, FCS can copy files and directories between the user’s workspace 
and the repository. 

Use Case: Configure FCS 
1. The user specifies the following information: 

a. The full path of the workspace root directory.  Example: 
/home/fred/cs248/workspace/ 

b. The full path of the repository root directory.  Example: 
/shared/cs428/repository/ 

 
NOTE: All remaining use cases assume that the user has previously performed the 
Configure FCS use case. 



Repository Initialization 
Before the repository can be used, the FCS administrator must: 

1. Create the repository root directory using regular file system commands 
2. Run FCS and tell it to initialize the repository 

 
Once repository initialization has been complete, the repository is ready to be accessed by 
team members.  Initialization is an administrative function that is performed only once 
before a repository is used for the first time. 

Use Case: Initialize Repository 
This use case allows a user to initialize the repository. 
  

1. The user requests repository initialization 
2. All initialization operations that are needed to prepare the repository for use are 

performed 
3. A successful completion message is displayed 

 
Variations: 

1. If the repository directory does not exist, an error message is displayed and the 
operation is aborted 

2. If the repository directory is not empty, an error message is displayed and the 
operation is aborted 

3. If initialization fails, an error message is displayed and the operation is aborted 



Adding Files/Directories to the Repository 
After repository initialization, the repository contains one directory (the root) and no 
files.  Additional files/directories to be added to the repository are first created in the 
user’s local workspace.  When the user is ready to share the new files/directories, they 
perform an FCS add operation to add them to the repository.  Adding a file/directory to 
the repository creates a copy of it in the repository, but does not remove it from the user’s 
workspace. 
 
Files/directories are added to the repository one at a time.  There is no batch mode for 
adding multiple files/directories at once.  When adding a file, the user must provide a 
textual description of the file’s contents. 
 
FCS can handle text files and binary files.  When adding a file to the repository, the user 
must specify whether the file is a text file or a binary file. 

Use Case: Add File 
This use case allows users to add workspace files to the repository. 
 

1. The user specifies the name of a workspace file, the type of the file (text or 
binary), and a string describing its contents, and requests that the file be added to 
the repository 

2. The workspace file is added to the repository as revision 1 
3. If the file is a text file, keyword substitution is performed on both the workspace 

and repository copies of the file (see the Keyword Substitution section) 
4. A successful completion message is displayed 

 
Variations: 

1. If the workspace file does not exist, an error message is displayed and the 
operation is aborted 

2. If the file already exists in the repository, an error message is displayed and the 
operation is aborted 

3. If the file’s directory does not exist in the repository, an error message is 
displayed and the operation is aborted 

4. If adding the file fails for any reason, an error message is displayed and the 
operation is aborted 



Use Case: Add Directory 
This use case allows users to add workspace directories to the repository. 
 

1. The user specifies the name of a workspace directory and requests that it be added 
to the repository 

2. The workspace directory is added to the repository 
3. A successful completion message is displayed 

 
Variations: 

1. If the workspace directory does not exist, an error message is displayed and the 
operation is aborted 

2. If the directory already exists in the repository, an error message is displayed and 
the operation is aborted 

3. If the directory’s parent directory does not exist in the repository, an error 
message is displayed and the operation is aborted 

4. If adding the directory fails for any reason, an error message is displayed and the 
operation is aborted 



Checking Out Files from the Repository 
When a user wants to retrieve the latest revision of a file from the repository, they must 
perform an FCS checkout operation.  A checkout operation copies the latest revision of 
the specified file from the repository into the user’s workspace.  If the user wants to 
checkout an earlier revision of the file rather than the latest one, they may specify the 
desired revision number when checking out the file. 
 
If a user wants to checkout a repository file with the intent of changing it, they must 
checkout the file in locked mode.  FCS only allows one user to lock a particular 
repository file at a time, thus preventing multiple users from simultaneously modifying 
the file.  When checking out a file in locked mode, it is possible that the file has already 
been locked by another user, in which case FCS will notify the user that the file is already 
locked.  Only the latest (or current) revision of a file may be checked out in locked mode.  
Earlier revisions may not be modified. 

Use Case: Checkout File 
This use case allows a user to copy a specified revision of a repository file into their 
workspace. 
 

1. The user specifies the name of the repository file and optionally a revision 
number or label, and requests that the file be checked out.  If the file is being 
checked out in locked mode, this is also specified.  If no revision number or label 
is specified, it defaults to the current revision.  If a label is specified, the revision 
number corresponding to that label is checked out (see the Repository Labeling 
section) 

2. The specified revision of the repository file is copied into the user’s workspace.  
If the file is being locked, the repository file is also marked as being locked so 
that no other users can lock it 

3. A successful completion message is displayed 
 
Variations: 

1. If the repository file does not exist, an error message is displayed and the 
operation is aborted 

2. If the specified revision of the repository file does not exist, an error message is 
displayed and the operation is aborted 

3. If no revision of the repository file has the specified label, an error message is 
displayed and the operation is aborted 

4. If locked mode is specified and the repository file is already locked by another 
user, an error message is displayed and the operation is aborted.  The error 
message indicates which user has the file locked 

5. If locked mode is specified and a revision other than the current revision is 
requested, an error message is displayed and the operation is aborted (only the 
current revision can be checked out in locked mode) 

6. If the checkout process fails for any reason, an error message is displayed and the 
operation is aborted 



Checking Out Directories from the Repository 
In addition to checking out files, a user may also checkout an entire repository directory.  
Checking out a repository directory recursively copies all of the files/directories in the 
specified repository directory to the user’s workspace.  This makes it convenient for users 
to retrieve the latest revisions of all files/directories in the repository or some part thereof.  
An example of this is a new team member who needs to copy all of the repository 
files/directories to their newly created workspace.  After creating their workspace root 
directory on their local file system, the user would perform an FCS checkout operation on 
the repository root directory, thereby copying all files/directories from the repository to 
the workspace. 

Use Case: Checkout Directory 
This use case allows a user to recursively checkout all of the files and subdirectories in a 
specified repository directory.  By default, every subdirectory and the current revision of 
every file within the specified repository directory are copied to the workspace.  
Alternatively, the user may specify a label indicating which version of the repository 
directory should be checked out.  If a label is specified, only those files and 
subdirectories that have the label are copied to the workspace.  It is an error to specify a 
label that is not associated with the specified repository directory.  However, it is 
expected that some files and subdirectories within the repository directory will not have 
the specified label.  This is not an error, but files and subdirectories that do not have the 
label are not copied to the workspace.  This allows the user to checkout only those files 
and directories that are part of the specified version of the repository. 
 
A directory may not be checked out in locked mode.  
 

1. The user specifies the name of the repository directory and optionally a label, and 
requests that the directory be checked out 

2. If the corresponding workspace directory does not exist, it is created 
3. For each file in the specified repository directory 

a. If a label was specified 
i. If the file has the specified label, copy the labeled revision of the 

file to the workspace 
ii. If the file does not have the specified label, do not copy the file to 

the workspace at all 
b. If a label was not specified, copy the current revision of the file to the 

workspace 
4. For each subdirectory in the specified repository directory 

a. If a label was specified 
i. If the subdirectory has the specified label, recursively copy the 

subdirectory to the workspace 
ii. If the subdirectory does not have the specified label, do not copy 

the subdirectory to the workspace 
b. If a label was not specified, recursively copy the subdirectory to the 

workspace 



5. A successful completion message is displayed 
 
Variations: 

1. If the repository directory does not exist, an error message is displayed and the 
operation is aborted 

2. If the specified repository directory does not have the specified label, an error 
message is displayed and the operation is aborted 

3. If directory creation fails, and error message is displayed and the operation is 
aborted. 



Checking In Modified Files 
After checking out a file in locked mode, the user is free to make changes to the file.  
When the changes are complete, the new revision of the file may be copied to the 
repository by executing an FCS checkin operation.  If the latest revision of the file is N, 
the new revision becomes revision N+1.  When checking in a file, the user must provide a 
textual log message describing the changes that were made to the file in the new revision.  
Checking in a file copies the new revision to the repository, but does not remove it from 
the user’s workspace. 

Use Case: Checkin File 
This use case allows a user to checkin a file that they currently have locked. 
 

1. The user specifies the name of a workspace file and a log message describing the 
changes that have been made to the file since it was checked out, and requests that 
the file be checked in 

2. The workspace file is copied into the repository as revision N+1, and the user’s 
lock on the repository file is released 

3. If the file is a text file, keyword substitution is performed on both the workspace 
and repository copies of the file (see the Keyword Substitution section) 

4. A successful completion message is displayed 
 
Variations: 

1. If the specified workspace file does not exist, an error message is displayed and 
the operation is aborted 

2. If the corresponding repository file does not exist, an error message is displayed 
and the operation is aborted 

3. If the user does not hold the lock on the repository file, an error message is 
displayed and the operation is aborted 

4. If the checkin process fails for any reason, an error message is displayed and the 
operation aborted 



Unlocking Files 
If a user locks a file for editing and then decides not to change the file after all, they 
should execute an FCS unlock operation to release their lock on the file.  Doing so will 
allow other users to modify the file.  Unlocking a file does not remove it from the user’s 
workspace. 

Use Case: Unlock File 
This use case allows a user to unlock a file that they currently have locked. 
 

1. The user specifies the name of a repository file and requests that it be unlocked 
2. The user’s lock on the specified repository file is released 
3. A successful completion message is displayed 

 
Variations: 

1. If the specified repository file does not exist, an error message is displayed and 
the operation is aborted 

2. If the user does not hold the lock on the specified repository file, an error message 
is displayed and the operation is aborted 

3. If releasing the lock fails for any reason, and error message is displayed and the 
operation is aborted 



Removing Files/Directories from the Repository 
Repository files and empty repository directories that are no longer needed may be 
removed from the repository by performing an FCS remove operation.  Files/directories 
are removed from the repository one at a time.  There is no batch mode for removing 
multiple files/directories at once.  Removing a file/directory from the repository does not 
remove the corresponding file/directory from the user’s workspace.  If the user wants to 
remove the workspace copy, they may do so using regular file system commands. 

Use Case: Remove File 
This use case allows users to remove files from the repository. 
 

1. The user specifies the name of a repository file and requests that it be removed 
from the repository 

2. The repository file is removed from the repository 
3. A successful completion message is displayed 

 
Variations: 

1. If the repository file does not exist, an error message is displayed and the 
operation is aborted 

2. If the repository file is locked, an error message is displayed and the operation is 
aborted.  The error message indicates which user has the file locked 

3. If the repository file has been labeled, an error message is displayed and the 
operation is aborted (see the Repository Labeling section) 

4. If removing the file fails for any reason, an error message is displayed and the 
operation aborted 

Use Case: Remove Directory 
This use case allows users to remove directories from the repository. 
 

1. The user specifies the name of a repository directory and requests that it be 
removed from the repository 

2. The repository directory is removed from the repository 
3. A successful completion message is displayed 

 
Variations: 

1. If the repository directory does not exist, an error message is displayed and the 
operation is aborted 

2. If the repository directory is not empty, an error message is displayed and the 
operation is aborted 

3. If the repository directory has been labeled, an error message is displayed and the 
operation is aborted (see the Repository Labeling section) 

4. If removing the directory fails for any reason, an error message is displayed and 
the operation is aborted 



Repository Labeling 
FCS supports repository labeling for keeping track of which files and directories make up 
a particular version of the repository.  When the repository is labeled, the user specifies a 
label string that describes the current version of the repository (e.g., “BETA_1”, 
“VERSION_1”, “VERSION_1.1”, etc.).  Every directory and the most recent revision of 
every file in the repository is marked with the specified label.  Thereafter, if there is ever 
a need to reconstitute that particular version of the repository, it can be done by 
specifying the correct label during an FCS checkout operation (e.g., “checkout 
VERSION_1.1”).  Doing so would cause all of the files and directories that make up the 
specified repository version to be copied into the user’s workspace. 
 
Every repository directory and file revision is marked with zero or more labels.  If a 
directory or file revision has a particular label, then it is part of that version of the 
repository. 
 
Any file or directory that has been marked with one or more labels may not be removed 
from the repository using an FCS remove operation because doing so would make it 
impossible to reconstitute previous versions of the repository. 
 
Any non-empty string may be used as a label. 

Use Case: Label Repository 
This use case allows a user to label all of the files and directories in the repository with a 
descriptive label. 
 

1. The user specifies a label string and requests that the repository be labeled 
2. Every directory and the current revision of every file in the repository is marked 

with the specified label string 
 
Variations: 

1. If the user specifies an empty label string, or a label string that has already been 
used, an error message is displayed and the operation is aborted 

2. If the repository cannot be labeled for any reason, an error message is displayed 
and the operation is aborted 



Viewing Repository, Directory, and File Information 
Users may ask FCS to display information about the repository itself or about a particular 
file/directory within the repository. 
 
Repository information includes: 

• The name of the user who initialized the repository 
• The date/time at which repository initialization occurred 
• A list of all labels that have been applied to the repository.  For each label, the 

following information is displayed: 
1. label string 
2. name of the user who created the label 
3. date/time at which the label was created 

 
Directory information includes: 

• The full path of the directory within the repository 
• The name of the user who added the directory to the repository 
• The date/time at which the directory was added to the repository 
• A list of all labels that have been applied to the directory 

 
File information includes: 

• The full path of the file within the repository 
• A description of the file’s contents (provided by the user when the file was 

added to the repository) 
• The name of the user who added the file to the repository 
• The date/time at which the file was added to the repository 
• The current revision number of the file 
• The name of the user who currently has the file locked (if any) 
• The date/time at which the user locked the file (if any) 
• A list of all labels that have been applied to the file.  For each label, the 

following information is displayed: 
1. label string 
2. file revision number that is associated with the label 

Use Case: View File Information 
This use case allows users to view information about a repository file. 
 

1. The user specifies the name of a repository file and requests that information 
about the file be displayed 

2. The following information about the repository file is displayed: 
a. full repository path 
b. description string (provided when the file was added to the repository) 
c. creation user  
d. creation date/time 
e. current revision number 



f. lock user (only if the file is currently locked) 
g. lock date/time (only if the file is currently locked) 
h. A list of all labels that have been applied to the file.  For each label, the 

following information is displayed: 
i. label string 

ii. file revision number that is associated with the label 
 
Variations: 

1. If the specified repository file does not exist, an error message is displayed and 
the operation aborted 

2. If the file information cannot be displayed for any reason, an error message is 
displayed and the operation is aborted 

Use Case: View Directory Information 
This use case allows users to view information about a repository directory. 
 

1. The user specifies the name of a repository directory and requests that information 
about the directory be displayed 

2. The following information about the repository directory is displayed: 
a. full repository path 
b. creation user  
c. creation date/time 
d. A list of all labels that have been applied to the directory 

 
Variations: 

1. If the specified repository directory does not exist, an error message is displayed 
and the operation aborted 

2. If the directory information cannot be displayed for any reason, an error message 
is displayed and the operation is aborted 

Use Case: View Repository Information 
This use case allows users to view information about the repository. 
 

1. The user requests that information about the repository be displayed 
2. The following information about the repository is displayed: 

a. creation user 
b. creation date/time 
c. A list of all labels that have been applied to the repository.  For each label, 

the following information is displayed: 
i. label string 

ii. name of the user who created the label 
iii. date/time at which the label was created 

 
Variations: 

1. If the repository information cannot be displayed for any reason, an error message 
is displayed and the operation is aborted 



Viewing a File’s Revision History 
Users may ask FCS to display the revision history of a repository file.  For each revision 
of the file, FCS will display the following information: 

• The revision number 
• The name of the user who made the revision 
• The date/time at which the revision was made 
• The log message provided by the user when the revision was checked in 

Use Case: View File Revision History 
This use case allows the user to view the revision history of a repository file. 
 

1. The user specifies the name of a repository file and requests that the file’s revision 
history be displayed 

2. The revision history of the file is displayed in reverse chronological order.  For 
each revision of the file, the following information is displayed: 

a. revision number 
b. revision user 
c. revision date/time 
d. revision log message (provided when the file was checked in) 

 
Variations: 

1. If the specified repository file does not exist, an error message is displayed and 
the operation aborted 

2. If the file revision history cannot be displayed for any reason, an error message is 
displayed and the operation is aborted  



Viewing File Revision Differences 
Users may ask FCS to display the differences between two revisions of a text file.  FCS 
compares the two file revisions and, at each point where the revisions differ, displays the 
lines that were inserted, deleted, or modified between the two revisions (similar to the 
Unix diff command). 

Use Case: View File Revision Differences 
This use case allows the user to view the differences between two revisions of a text file. 
 

1. The user specifies the name of a repository file, along with the numbers of the two 
revisions of the file that are to be compared 

a. if no revision numbers are specified, FCS compares the copy of the file in 
the user’s workspace with the current revision of the file 

b. if the user specifies one revision number, FCS compares the copy of the 
file in the user’s workspace with the specified revision of the file 

c. if the user specifies two revision numbers, FCS compares the two 
specified revisions of the file 

2. The differences between the two specified revisions are displayed (i.e., lines 
inserted, deleted, or modified between the two revisions) 

 
Variations: 

1. If the specified repository file does not exist, an error message is displayed and 
the operation aborted 

2. If the specified repository file is a binary file, an error message is displayed and 
the operation aborted 

3. If one or both of the specified file revisions does not exist, an error message is 
displayed and the operation aborted 



Keyword Substitution 
FCS performs automatic keyword substitution on text files whenever they are added or 
checked-in to the repository.  This allows revision control-related information to be 
embedded within the body of a text file.  The following keywords are supported: 
 
@Path@ - the path of the file relative to the repository root 
@Revision@ - the revision number of the file 
@Author@ - the name of the user who checked in this revision of the file 
@Time@ - the date/time at which this revision of the file was checked in 
 
For example, the initial creator of a text file could include the following header in the 
file: 
 
/* 
@Path@ 
@Revision@ 
@Author@ 
@Time@ 
*/ 
 
When the file is added to the repository, FCS would substitute each of the keywords as 
follows: 
 
/* 
@Path: project/src/SomeFile.java @ 
@Revision: 1 @ 
@Author: fred @ 
@Time: Fri Jun 13 12:00:29 MDT 2003 @ 
*/ 
 
Keyword substitution is performed on both the workspace and repository copies of the 
file.  When revision 2 of the file is checked in, FCS would make the following 
substitution in both the workspace and repository: 
 
/* 
@Path: project/src/SomeFile.java @ 
@Revision: 2 @ 
@Author: barney @ 
@Time: Mon Jun 16 10:34:13 MDT 2003 @ 
*/ 
 
Keyword substitution is only performed on text files, not on binary files.   Keywords 
need not appear in comments; they may appear anywhere in a text file.  In fact, any text 
file may contain keywords, not just source code files. 


