
Software Process Models
IAN SOMMERVILLE

Computing Department, Lancaster University, Lancaster, UK ^is@comp.lancs.ac.uk&

The software process consists of the ac-
tivities and associated information that
are required to develop a software sys-
tem. Every organization has its own
specific software process but these indi-
vidual approaches usually follow some
more abstract generic process model.
These generic process models are the
subject of this article.

SPECIFICATION-BASED MODELS

The failure of several high-profile soft-
ware projects in the 1960s led to the
notion of a software life-cycle or process.
The initial life-cycle model [Royce 1970]
is now termed the waterfall model. This
model consists of a set of phases, start-
ing with system specification, with re-
sults cascading from one stage to an-
other. The waterfall model includes the
following phases:

(1) Specification. The functionality of
the software and its operating con-
straints are specified in detail.

(2) Design and implementation. The
overall structure of the software is
designed and specific software com-
ponents identified. These are imple-
mented using some programming
language, often by separate individ-
uals or teams.

(3) Integration and testing. Individually
developed modules are integrated
into a complete system and tested.

(4) Operation and maintenance. The
software is delivered to the cus-
tomer and modified to meet chang-
ing requirements and to repair er-
rors discovered in use.

The problem with this model is the lack
of feedback from one stage to another.
Specification, design, and implementa-
tion problems are often discovered only
after implementation when the system
has been integrated. Once a specifica-
tion has been frozen, it is difficult to
change in response to changing user
needs. However, stakeholders in the
system (end-users, managers, and so
on) find it difficult to anticipate their
real needs for software support, and
both organizational and end-user re-
quirements change during the develop-
ment process. There is therefore a con-
stant pressure for specification change.
This means that, in practice, there is

always some iteration between the
phases of the model, but this is invari-
ably fairly limited and the delivered
software may not meet the real needs of
the customer. This led to widespread
criticism of the waterfall model [Glad-
den 1982; McCracken and Jackson
1982] and the development of alterna-
tive software processes.
Incremental models [Mills et al. 1980]

are a development of the waterfall
model that attempt to provide some de-
velopment stability while allowing us-
ers some opportunity for specification
change. In this approach, the system
functionality is partitioned into a series
of increments and these are developed
and delivered one by one. While one
increment is being developed, its speci-
fication is frozen, but the specification
of other increments may change. A ver-
sion of the system is delivered early to
users and they may experiment with it
to help clarify their needs for later sys-
tem increments.

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



The Cleanroom approach [Mills et al.
1987; Linger 1994] relies on incremen-
tal development, with each increment
being formally specified. This specifica-
tion is manually transformed into an
implementation that is validated by for-
mally proving that it meets its specifica-
tion. There is no unit testing in the
process and the objective of integration
testing is to validate the system’s reli-
ability rather than discover system de-
fects. This approach has reportedly led
to a very low number of defects in deliv-
ered systems [Selby et al. 1987].
Specification-based models are most

applicable to large system-engineering
projects. Hardware and software sub-
systems may be developed in parallel by
different organizations, and this re-
quires both the system specification and
the system architecture to be defined
early in the development process.

EVOLUTIONARY DEVELOPMENT MODELS

The fundamental difficulties with a
specification-based approach to develop-
ment are that stakeholders in a system
find it difficult to articulate their re-
quirements in advance and that re-
quirements change during the develop-
ment process. An evolutionary approach
to development integrates specification,
design, and implementation. The stages
in an evolutionary process are:

(1) Formulate an outline of the system
requirements. This need be neither
complete nor consistent but should
give developers guidance as to what
the system should do.

(2) Develop a system as rapidly as pos-
sible, based on this outline specifica-
tion.

(3) Evaluate this system with users and
modify the system until the system
functionality meets the users’ needs.
This involves modifying the initial
functionality of the system and add-
ing new functionality as required.

This approach is usually supported by
the use of domain-specific languages
such as 4GLs or by very high-level, in-

terpreted languages such as Prolog or
Smalltalk. The developed system may
be used as a basis for a system specifi-
cation (throw-away prototyping) or may
evolve into the system delivered to the
user (evolutionary development).
While this development process is

more likely to lead to software that is
better suited to the end-user’s require-
ments, it has a number of problems in
its own right:

(1) It has an end-user focus, so critical
organizational requirements (such
as the need for interoperability) may
not be given sufficient priority.

(2) The constant change to software de-
grades its structure so that the end
result is often difficult and expen-
sive to change. Consequently, the
software is expensive to maintain
and may have to be completely re-
written after a relatively short life-
time.

(3) The process does not have a high
visibility and it is difficult for man-
agers to assess how well develop-
ment is proceeding. Many organiza-
tions are reluctant to use an
evolutionary approach for large sys-
tems in which management is the
principal problem.

In an attempt to integrate evolutionary
development with the management re-
quirements of large system engineering
processes, Boehm [1988] proposed the
spiral model of development. In this
model, development spirals outward
from a specification. In each round of
the spiral, there is an explicit risk as-
sessment and reduction phase. In this
phase, prototype systems may be devel-
oped to reduce specification uncertain-
ties, to establish a user interface design,
and so on. These may either inform the
system specification or evolve into the
delivered system. Different parts of the
system can be developed using different
approaches.
Evolutionary development is the most

appropriate approach for interactive
systems with a significant user inter-

270 • Ian Sommerville

ACM Computing Surveys, Vol. 28, No. 1, Mazrch 1996



face component and for innovative sys-
tems (for example, AI systems) whose
requirements cannot be anticipated.
This approach is also widely used for
small and medium-sized business sys-
tem development where it is supported
by 4GLs.

CONCLUSION

The most appropriate software process
model depends on the organization de-
veloping the software, the type of soft-
ware being developed, and the capabili-
ties of the staff. There is no “ideal”
model and it makes little sense to try to
fit all development into a single ap-
proach.
For large systems, a hybrid model is

likely to be the most appropriate, where
well understood parts of the system are
developed using some form of the water-
fall model, and those subsystems whose
requirements are difficult to predict are
developed using an evolutionary ap-
proach.

REFERENCES

BOCHM, B. W. 1988. A spiral model of software
development and enhancement. IEEE Com-
puter, 21, 5, 61–72.

GLADDEN, G. R. 1982. Stop the life cycle—I
want to get off. ACM Softw. Eng. Notes 7, 2,
35–39.

LINGER, R. C. 1994. Cleanroom process model.
IEEE Software 11, 2, 50–58.

MCCRACKEN, D. D. AND JACKSON, M. A. 1982.
Life cycle concept considered harmful. ACM
Softw. Eng. Notes 7, 2, 28–32.

MILLS, H. D., DYER, M. AND LINGER, R. 1987.
Cleanroom software engineering. IEEE Soft-
ware 4, 5, 19–25.

MILLS, H. D., O’NEILL, D., LINGER, R. C., DYER, M.,
AND QUINNAN, R. E. 1980. The management
of software engineering. IBM Syst. J. 24, 2,
414–477.

ROYCE, W. W. 1970. Managing the development
of large software systems: Concepts and tech-
niques. In Proceedings of IEEE WESTCON.
(Los Angeles, CA), 1–9.

SELBY, R. W., BASILI, V. R., AND BAKER, F.
T. 1987. Cleanroom software development:
An empirical evaluation. IEEE Trans. Softw.
Eng. SE-13, 9, 1027–1037.

Software Process Models • 271

ACM Computing Surveys, Vol. 28, No. 1, Mazrch 1996


