
HTTP message format

<start-line>
<headers>

<entity-body>



HTTP Request message format
<method> <request-URL> <version>\r\n
<headers>\r\n
\r\n
<entity-body>

GET /test/hi-there.txt HTTP/1.1
Accept: text/*
Host: www.joes-hardware.com

<method> is the operation to perform on URL
<request-URL> can be full URL or just the path part
<version> is of the form HTTP/<major>.<minor>
<entity-body> is a stream of bytes (could be empty)



HTTP Response message format
<version> <status> <reason-phrase>\r\n
<headers>\r\n
\r\n
<entity-body>

HTTP/1.0 200 OK
Content-type: text/plain
Content-length: 18

Hi! I’m a message!

<version> is of the form HTTP/<major>.<minor>
<status> is a 3-digit number indicating status of request
<reason-phrase> human-readable description of status code
<entity-body> is a stream of bytes (could be empty)



HTTP Request Methods

• GET – Retrieve document from server
• PUT – Store document on server
• DELETE – Remove document from server
• POST – Send data to server for processing
• HEAD – Retrieve document headers from server
• OPTIONS – Determine what methods the server supports
• TRACE – Trace the path taken by a request through proxy 

servers on the way to the destination server



HTTP Response status codes

• 100-199   Informational
• 200-299   Successful
• 300-399   Redirection
• 400-499   Client error
• 500-599   Server error

• 200   OK
• 401   Unauthorized to access resource
• 404   Requested resource does not exist



HTTP Headers

• List of name/value pairs
• Name: Value\r\n

• Empty line separates headers and entity body

• General headers
– Date: Tue, 3 Oct 1974 02:16:00 GMT

• Time at which message was generated

– Connection: close
• Client or server can specify options about the underlying connection



HTTP Request Headers
• Host: www.joes-hardware.com

– Host from the request URL

• User-Agent: Mozilla/4.0
– Client application making the request

• Accept: text/html, text/xml
– MIME types the client can handle

• Referer: http://www.joes-hardware.com/index.html
– Page that contained the link currently being requested

• If-Modified-Since: Tue, 3 Oct 1974 02:16:00 GMT
– Conditional request; only send the document if it changed since I last retrieved it



HTTP Response Headers
• Content-length: 15023

– Length of response entity body measured in bytes

• Content-type: text/html
– MIME type of response entity body

• Server: Apache/1.2b6
– Server software that handled the request

• Cache-Control: no-cache
– Clients must not cache the response document



HTTP is a “stateless” protocol
• Each request/response transaction is unrelated to all 

previous transactions
• HTTP stores no server-side state between requests
• Any information needed by the server to process a request 

must be provided as part of the request
• If the server goes down and comes back up, the client can 

pick up right where it left off (no need to synchronize its 
state with the server)

• Stateless protocols are simpler, but web sites like to 
remember things about clients across multiple requests
– Names, preferences, account information, etc.



HTTP Cookies

• HTTP allows the server to store a small amount of state on 
the client

• Each request from the client to the server contains the state 
previously stored by that server on the client

• This way the server can “remember” who the client is and 
something about them



HTTP Cookies
• Server stores a name/value pair on the client with a Set-

Cookie response header

• Set-Cookie: name=value [; expires=date] [; path=path] 
[; domain=domain] [;secure]

• Set-Cookie: name=“mary”; expires= Tue, 3 Oct 1974 
02:16:00 GMT; path=/booksales; domain=amazon.com; 
secure

• If “expires” is not specified, the cookie will expire when 
the user’s session ends (i.e., when the browser is closed)



HTTP Cookies
• Client stores all unexpired cookies from all web sites the 

user has visited

• When the client sends a request to a server, all cookies that 
apply to the request URL are placed in the request using 
Cookie request headers

• Cookie: name=“mary”; account=“1234”

• Server uses the cookie values to personalize the user’s 
interaction with the web site



Web Sessions

• HTTP is stateless
• Web applications are very stateful
• Web “session”

– Login
– Use the application => many HTTP requests
– Logout

• Application needs server-side state to track user activities 
across multiple requests

• Web servers layer facilities for tracking server-side state 
on top of HTTP



Cookie-based web sessions
• When user logs in, web application creates a state object for the current user 

session

• Web application assigns an ID to the session and stores the state object in a 
fast data structure, using the session ID as the lookup key

• Web application sends the session ID back to the client as a Cookie
– Set-Cookie: sessionid=83746

• Client sends session ID in Cookie header with each HTTP request
– Cookie: sessionid=83746

• Web application extracts session ID from Cookie header and uses it to look up 
the session’s state object

• We now have server-side state



Fat URL-based web sessions
• Some users turn off HTTP cookies, but we still want stateful web 

applications to work

• Instead of using Cookies to pass the session ID between client and 
server, the web application embeds the session ID in all URLs passed 
back to the client
– <A href=“http://www.amazon.com/books/computers/83746”> 

Computer Books</A>

• Requires web application to embed session ID in all URLs
– Sometimes called “URL rewriting”
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