
HTTP message format

<start-line>
<headers>

<entity-body>

HTTP Request message format
<method> <request-URL> <version>\r\n
<headers>\r\n
\r\n
<entity-body>

GET /test/hi-there.txt HTTP/1.1
Accept: text/*
Host: www.joes-hardware.com

<method> is the operation to perform on URL
<request-URL> can be full URL or just the path part
<version> is of the form HTTP/<major>.<minor>
<entity-body> is a stream of bytes (could be empty)

HTTP Response message format
<version> <status> <reason-phrase>\r\n
<headers>\r\n
\r\n
<entity-body>

HTTP/1.0 200 OK
Content-type: text/plain
Content-length: 18

Hi! I’m a message!

<version> is of the form HTTP/<major>.<minor>
<status> is a 3-digit number indicating status of request
<reason-phrase> human-readable description of status code
<entity-body> is a stream of bytes (could be empty)

HTTP Request Methods

• GET – Retrieve document from server
• PUT – Store document on server
• DELETE – Remove document from server
• POST – Send data to server for processing
• HEAD – Retrieve document headers from server
• OPTIONS – Determine what methods the server supports
• TRACE – Trace the path taken by a request through proxy

servers on the way to the destination server

HTTP Response status codes

• 100-199 Informational
• 200-299 Successful
• 300-399 Redirection
• 400-499 Client error
• 500-599 Server error

• 200 OK
• 401 Unauthorized to access resource
• 404 Requested resource does not exist

HTTP Headers

• List of name/value pairs
• Name: Value\r\n

• Empty line separates headers and entity body

• General headers
– Date: Tue, 3 Oct 1974 02:16:00 GMT

• Time at which message was generated

– Connection: close
• Client or server can specify options about the underlying connection

HTTP Request Headers
• Host: www.joes-hardware.com

– Host from the request URL

• User-Agent: Mozilla/4.0
– Client application making the request

• Accept: text/html, text/xml
– MIME types the client can handle

• Referer: http://www.joes-hardware.com/index.html
– Page that contained the link currently being requested

• If-Modified-Since: Tue, 3 Oct 1974 02:16:00 GMT
– Conditional request; only send the document if it changed since I last retrieved it

HTTP Response Headers
• Content-length: 15023

– Length of response entity body measured in bytes

• Content-type: text/html
– MIME type of response entity body

• Server: Apache/1.2b6
– Server software that handled the request

• Cache-Control: no-cache
– Clients must not cache the response document

HTTP is a “stateless” protocol
• Each request/response transaction is unrelated to all

previous transactions
• HTTP stores no server-side state between requests
• Any information needed by the server to process a request

must be provided as part of the request
• If the server goes down and comes back up, the client can

pick up right where it left off (no need to synchronize its
state with the server)

• Stateless protocols are simpler, but web sites like to
remember things about clients across multiple requests
– Names, preferences, account information, etc.

HTTP Cookies

• HTTP allows the server to store a small amount of state on
the client

• Each request from the client to the server contains the state
previously stored by that server on the client

• This way the server can “remember” who the client is and
something about them

HTTP Cookies
• Server stores a name/value pair on the client with a Set-

Cookie response header

• Set-Cookie: name=value [; expires=date] [; path=path]
[; domain=domain] [;secure]

• Set-Cookie: name=“mary”; expires= Tue, 3 Oct 1974
02:16:00 GMT; path=/booksales; domain=amazon.com;
secure

• If “expires” is not specified, the cookie will expire when
the user’s session ends (i.e., when the browser is closed)

HTTP Cookies
• Client stores all unexpired cookies from all web sites the

user has visited

• When the client sends a request to a server, all cookies that
apply to the request URL are placed in the request using
Cookie request headers

• Cookie: name=“mary”; account=“1234”

• Server uses the cookie values to personalize the user’s
interaction with the web site

Web Sessions

• HTTP is stateless
• Web applications are very stateful
• Web “session”

– Login
– Use the application => many HTTP requests
– Logout

• Application needs server-side state to track user activities
across multiple requests

• Web servers layer facilities for tracking server-side state
on top of HTTP

Cookie-based web sessions
• When user logs in, web application creates a state object for the current user

session

• Web application assigns an ID to the session and stores the state object in a
fast data structure, using the session ID as the lookup key

• Web application sends the session ID back to the client as a Cookie
– Set-Cookie: sessionid=83746

• Client sends session ID in Cookie header with each HTTP request
– Cookie: sessionid=83746

• Web application extracts session ID from Cookie header and uses it to look up
the session’s state object

• We now have server-side state

Fat URL-based web sessions
• Some users turn off HTTP cookies, but we still want stateful web

applications to work

• Instead of using Cookies to pass the session ID between client and
server, the web application embeds the session ID in all URLs passed
back to the client
–

Computer Books

• Requires web application to embed session ID in all URLs
– Sometimes called “URL rewriting”

	HTTP message format
	HTTP Request message format
	HTTP Response message format
	HTTP Request Methods
	HTTP Response status codes
	HTTP Headers
	HTTP Request Headers
	HTTP Response Headers
	HTTP is a “stateless” protocol
	HTTP Cookies
	HTTP Cookies
	HTTP Cookies
	Web Sessions
	Cookie-based web sessions
	Fat URL-based web sessions

