CS 465 Computer Security

Kent Seamons

Sources:

Schneier, Secrets and Lies
Stallings, Network Security Essentials
Network Security and Defenses

- Goals:
 - Understand basic terminology
 - Understand basic threats
 - Understand defenses
 - limitations
Network Security

- IP security
 - IP spoofing
- DNS security
- Denial-of-service attacks
 - SYN flooding
 - Mail bombing
- Distributed denial-of-service attacks
 - Pizza delivery attack
Network Defenses

- Firewalls
- Demilitarized zones
- Virtual private networks
- Intrusion detection systems
- Honeypots
- Vulnerability scanners
Firewalls

- A machine that protects a company’s internal network from attackers
- Ways to defeat a firewall
 - Go around it
 - Sneak something through it
 - Take it over
- Types
 - Packet filters
 - Application gateways (proxies)
Demilitarized Zone

- Employ two logical firewalls
- One firewall protects DMZ from the outside world
- Another firewall protects the internal network from the DMZ
- Place web servers in the DMZ
Virtual Private Networks

- A secure connection over a public network
- Two main uses
 - Connect disjoint pieces of the same network
 - Connect mobile users
- Common protocol – IPSec
 (growing use of TLS)
Intrusion Detection Systems (IDS)

- Network monitors
- Two basic approaches
 - Misuse detection
 - Anomaly detection
- Example: Snort
 - www.snort.org
 - www.sans.org/resources/idfaq/
- Example: Tripwire (file system intrusions)
 - www.tripwire.org
 - sourceforge.net/projects/tripwire
Honeypots

- Entire dummy computers and subnetworks designed to look inviting to attackers
- Early example (if not the first)
 - Cliff Stoll, “The Cuckoos Egg”
Vulnerability Scanners

- Automated program to scan the network looking for weaknesses
 - Identify information about a host
 - What O/S is running
 - What ports accept connections
- A useful tool for attackers and defenders
- Example: nmap (“Network Mapper”)
 - www.insecure.org
Firewalls (more details)

■ Effective means of protecting a local system or network of systems from network-based security threats while at the same time affording access to the outside world via wide area networks and the Internet

■ It is not practical to equip each server and workstation on a network with strong security features
Firewall Design

- The firewall is inserted between the local area network and the Internet.

- Aims:
 - Establish a controlled link and erect an outer security wall or perimeter.
 - Protect the local network from Internet-based attacks.
 - Provide a single choke point where security and audit can be imposed.
Firewall Characteristics

- Design goals:
 - All traffic from inside to outside must pass through the firewall (physically blocking all access to the local network except via the firewall)
 - Only authorized traffic (defined by the local security policy) will be allowed to pass
 - The firewall itself is immune to penetration (use of trusted system with a secure operating system)
Firewall Limitations

- Cannot protect against attacks that bypass the firewall, such as dial-in and dial-out capabilities
- The firewall does not protect against internal threats
- The firewall cannot protect against the transfer of virus-infected programs or files
Types of Firewalls

- Three common types of firewalls:
 - Packet-filtering routers
 - Application-level gateways
 - Circuit-level gateways
Types of Firewalls

- Packet-filtering Router
Types of Firewalls

- Packet-filtering Router
 - Applies a set of rules to each incoming IP packet and then forwards or discards the packet
 - Filter packets going in both directions
 - The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP header
 - Two default policies (discard or forward)
Types of Firewalls

- **Advantages:**
 - Simplicity
 - Transparency to users
 - High speed

- **Disadvantages:**
 - Difficulty of setting up packet filter rules
 - Lack of authentication
Types of Firewalls

- Possible attacks
 - IP address spoofing
 - Source routing attacks
 - Tiny fragment attacks
Types of Firewalls

- Application-level Gateway

![Diagram showing an application-level gateway between an outside host and an inside host, with protocols like TELNET, FTP, SMTP, and HTTP.]
Types of Firewalls

- Application-level Gateway
 - Also called proxy server
 - Acts as a relay of application-level traffic
Types of Firewalls

■ Advantages:
 – Tend to be more secure than packet filters
 – Only need to scrutinize a few allowable applications
 – Easy to log and audit all incoming traffic

■ Disadvantages:
 – Additional processing overhead on each connection (gateway as splice point)
Types of Firewalls

- Circuit-level Gateway
Types of Firewalls

- Circuit-level Gateway
 - Stand-alone system or
 - Specialized function performed by an Application-level Gateway
 - Sets up two TCP connections
 - The gateway typically relays TCP segments from one connection to the other without examining the contents
Types of Firewalls

- Circuit-level Gateway
 - The security function consists of determining which connections will be allowed
 - Typically used is a situation in which the system administrator trusts the internal users
 - An example is the SOCKS package
Types of Firewalls

- **Bastion Host**
 - A system identified by the firewall administrator as a critical strong point in the network’s security
 - The bastion host serves as a platform for an application-level or circuit-level gateway
Firewall Configurations

- In addition to the use of simple configuration of a single system (single packet filtering router or single gateway), more complex configurations are possible
- Three common configurations
Firewall Configurations

- Screened host firewall system (single-homed bastion host)
Firewall Configurations

- Screened host firewall, single-homed bastion configuration
- Firewall consists of two systems:
 - A packet-filtering router
 - A bastion host
Firewall Configurations

- Configuration for the packet-filtering router:
 - Only packets from and to the bastion host are allowed to pass through the router

- The bastion host performs authentication and proxy functions
Firewall Configurations

- Greater security than single configurations because of two reasons:
 - This configuration implements both packet-level and application-level filtering (allowing for flexibility in defining security policy)
 - An intruder must generally penetrate two separate systems
Firewall Configurations

- This configuration also affords flexibility in providing direct Internet access (public information server, e.g. Web server)
 - The packet filtering router may allow direct traffic between the information server and the Internet
Firewall Configurations

- Screened host firewall system (dual-homed bastion host)
Firewall Configurations

- Screened host firewall, dual-homed bastion configuration
 - If the packet-filtering router is completely compromised, traffic must still flow through the bastion host
 - Traffic between the Internet and other hosts on the private network must flow through the bastion host
Firewall Configurations

- Screened-subnet firewall system
Firewall Configurations

- Screened subnet firewall configuration
 - Most secure configuration of the three
 - Two packet-filtering routers are used
 - Creation of an isolated sub-network
Firewall Configurations

- Advantages:
 - Three levels of defense to thwart intruders
 - The outside router advertises only the existence of the screened subnet to the Internet (internal network is invisible to the Internet)
 - The inside router advertises only the existence of the screened subnet to the internal network (the systems on the inside network cannot construct direct routes to the Internet)
Firewall

- Examples
 - Packet filtering – Unix iptables (ipchains)
 - Personal firewall – run on your PC to protect your home network
 - BlackICE
 - Zone Alarm Pro
 - Symantec Norton Personal Firewall
 - Many others